English
新闻公告
More
化学进展 2014, Vol. 26 Issue (05): 866-878 DOI: 10.7536/PC131025 前一篇   后一篇

• 综述与评论 •

检测活性氮物种的荧光探针

景晓彤1,2, 于法标1, 陈令新*1   

  1. 1. 中国科学院海岸带环境过程与生态修复重点实验室 山东省海岸带环境工程技术研究中心 中国科学院烟台海岸带研究所 烟台 264003;
    2. 曲阜师范大学化学与化工学院 曲阜 273165
  • 收稿日期:2013-10-01 修回日期:2013-11-01 出版日期:2014-05-15 发布日期:2014-03-13
  • 通讯作者: 陈令新,e-mail:lxchen@yic.ac.cn E-mail:lxchen@yic.ac.cn
  • 基金资助:

    国家自然科学基金项目(No. 21275158);中国科学院重要方向性项目(No. KZCX2-EW-206)和中国科学院“百人计划”择优支持项目资助

Fluorescent Probes for Reactive Nitrogen Species

Jing Xiaotong1,2, Yu Fabiao1, Chen Lingxin*1   

  1. 1. Key Laboratory of Coastal Environmental Processes and Ecological Remediation, The Research Center for Coastal Environmental Engineering and Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China;
    2. College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
  • Received:2013-10-01 Revised:2013-11-01 Online:2014-05-15 Published:2014-03-13
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21275158), the Innovation Projects of the Chinese Academy of Sciences (No. KZCX2-EW-206) and the 100 Talents Program of the Chinese Academy of Sciences

活性氮是一类具有高生物化学活性的含氮原子的化学物种。这类活性物种具有特殊的生理功能,并在生命体的生理和病理过程中起着至关重要的作用。因此,设计开发用于选择性识别和高灵敏检测生物体内的活性氮物种的技术具有十分重要的意义。荧光探针作为一种具有高灵敏度、高选择性、对生物样品损伤小的实时原位的可视化检测技术,为深入阐明活性氮物种在生理和病理过程中所起的作用提供了一个便利有效的检测手段,并已在检测活性氮物种领域中得到了广泛应用。活性氮物种荧光探针可以进一步阐述活性氮物种特殊的生理功能,提高人们对该类物种在细胞信号转导方面的认知。本文根据活性氮物种的种类对荧光探针进行了分类,详细介绍了近四年来用于检测活性氮物种的荧光探针的研究进展,主要探讨了探针的设计方法、荧光响应机制及其生物应用,并对探针的设计合成和应用前景进行了展望。

It is generally established that the intracellular reactive nitrogen species (RNS) which contain nitrogen atoms are one class of highly chemical active species. These species have attracted increasing attention and become an active research field based on their key roles in special functions during a series of physiological and pathological processes. In order to elucidate these roles of RNS, the design and development technology for selective and sensitive detection to RNS in vivo are crucial. Advanced with high sensitivity, good selectivity, noninvasive detection and real-time visualization in situ, fluorescent probes provide facilitative and effective chemical approaches in modern biochemistry analysis. Progress in the field of fluorescent probes for RNS promises to advance our knowledge of essential cellular signal transduction during the varieties of physiological and pathological processes, which is indicated in human health and disease. According to the current situation, we review the past four years'latest five types of RNS probes for nitric oxide (NO), peroxynitrite (ONOO-), nitroxyl (HNO), nitrite (NO2-) and nitrogen dioxide (NO2). In this article, the design strategies, fluorescent response mechanisms and biological applications of the probes are discussed. Finally, the prospect to design and applications of probes is given.

Contents
1 Introduction
2 Fluorescent probes for NO
2.1 NO-induced o-phenylenediamine cyclization reaction
2.2 NO-induced spirocyclic opening reaction
2.3 NO-induced diazotization
2.4 Reaction between transition metal and NO
2.5 NO-induced denitrogenation reaction
3 Fluorescent probes for ONOO-
3.1 ONOO- probe based on mimicked selenoenzyme
3.2 ONOO- probe based on oxidized-borate reaction
3.3 ONOO- probe based on oxidative coupling reaction
3.4 ONOO- probes based on like-Baeyer-Villiger reaction
3.5 ONOO- probes based on other chemical reaction
4 Fluorescent probes for HNO
4.1 Fluorescent probe based on the reaction between Cu(Ⅱ) and HNO
4.2 HNO probes based on other chemical reaction
5 Fluorescent probes for NO2-
6 Fluorescent probes for NO2
7 Conclusion and outlook

中图分类号: 

()

[1] Cui S, Shi Y, Groffman P M, Schlesinger W H, Zhu Y G. Proc. Natl. Acad. Sci. U. S. A., 2013, 110: 2052.
[2] Bove P F, van der Vliet A. Free. Radic. Biol. Med., 2006, 41: 515.
[3] Chen X Q, Tian X Z, Shin I, Yoon J. Chem. Soc. Rev., 2011, 40: 4783.
[4] Chen X Q, Pradhan T, Wang F, Kim J S, Yoon J. Chem. Rev., 2012, 112: 1910.
[5] Nagano T. J. Clin. Biochem. Nutr., 2009, 45: 111.
[6] Yang Y M, Zhao Q, Feng W, Li F Y. Chem. Rev., 2013, 113: 192.
[7] Yuan L, Lin W Y, Zheng K B, He L W, Huang W M. Chem. Soc. Rev., 2013, 42: 622.
[8] Chan J, Dodani S C, Chang C J. Nat. Chem., 2012, 4: 973.
[9] Boens N, Leena V, Dehaen W. Chem. Soc. Rev., 2012, 41: 1130.
[10] Gladwin M T, Crawford J H, Patel R P. Free Radic. Biol. Med., 2004, 36: 707.
[11] Prast H, Philippu A. Prog. Neurobiol., 2001, 64: 51.
[12] John W. Int. J. Immunopharmacol., 2001, 1: 1397.
[13] Nagano T, Yoshimura T. Chem. Rev., 2002, 102: 1235.
[14] Lim M H, Lippard S J. Acc. Chem. Res., 2007, 40: 41.
[15] Suzuki N, Kojima H, Urano Y, Kikuchi K, Hirata Y, Nagano T. J. Biol. Chem., 2002, 277: 47.
[16] Kojima H, Hirotani M, Nakatsubo N, Kikuchi K, Urano Y, Higuchi T, Hirata Y, Nagano T. Anal. Chem., 2001, 73: 1967.
[17] Gabe Y, Ueno T, Urano Y, Kojima H, Nagano T. Anal. Bioanal. Chem., 2006, 386: 621.
[18] Sasaki E, Kojima H, Nishimatsu H, Urano Y, Kikuchi K, Hirata Y, Nagano T. J. Am. Chem. Soc., 2005, 127: 3684.
[19] Hirano T, Hiromoto K, Kagechika H. Org. Lett., 2007, 9: 1315.
[20] Hu J X, Yin L L, Xu K H, Gao J J, Tong L L, Tang B. Anal. Chim. Acta, 2008, 606: 57.
[21] Izumi S, Urano Y, Hanaoka K, Terai T, Nagano T. J. Am. Chem. Soc., 2009, 131: 10189.
[22] Galindo F, Kabir N, Gavrilovic J, Russell D A. Photochem. Photobiol. Sci., 2008, 7: 126.
[23] Zhang R, Ye Z Q, Wang G L, Zhang W Z, Yuan J L. Chem. Eur. J., 2010, 16: 6884.
[24] Yu H B, Xiao Y, Jin L J. J. Am. Chem. Soc., 2012, 134: 17486.
[25] Chen J B, Zhang H X, Guo X F, Wang H, Zhang H S. Anal. Bioanal. Chem., 2013, 405: 7447.
[26] Vegesna G K, Sripathi S R, Zhang J, Zhu S, He W, Luo F T, Jahng W J, Frost M, Liu H. ACS Appl. Mater. Interfaces., 2013, 5: 4107.
[27] Lin L Y, Lin X Y, Lin F, Wong K T. Org. Lett., 2011, 13: 2216.
[28] Zhang R, Ye Z Q, Wang G L, Zhang W Z, Yuan J L. Chem. Eur. J., 2010, 16: 6884.
[29] Chen Y G, Guo W H, Ye Z Q, Wang G L, Yuan J L. Chem. Commun., 2011, 47: 6266.
[30] Terai T, Urano Y, Izumi S, Kojima H, Nagano T. Chem. Commun., 2012, 48: 2840.
[31] Seo E W, Han J H, Heo C H, Shin J H, Kim H M, Cho B R. Chem. Eur. J., 2012, 18: 12388.
[32] Yu C M, Wu Y L, Zeng F, Wu S Z. J. Mater. Chem. B, 2013, 33: 4152.
[33] Yuan L, Lin W Y, Xie Y N, Chen B, Zhu S S. J. Am. Chem. Soc., 2012, 134: 1305.
[34] Yuan L, Lin W Y, Xie Y N, Chen B, Song J Z. Chem. Commun., 2011, 47: 9372.
[35] Yu H B, Zhang X F, Xiao Y, Zou W, Wang L P, Jin L J. Anal. Chem., 2013, 85: 7076.
[36] Sun C D, Shi W, Song Y C, Chen W, Ma H M. Chem. Commun., 2011, 47: 8638.
[37] Wu C M, Chen Y H, Dayananda K, Shiue T W, Hung C H, Liaw W F, Chen P Y, Wang Y M. Anal. Chim. Acta, 2011, 708: 141.
[38] Yang Y J, Seidlits S K, Adams M M, Lynch V M, Schmidt C E, Anslyn E V, Shear J B. J. Am. Chem. Soc., 2010, 132: 13114.
[39] Hilderbrand S A, Lippard S J. Inorg. Chem., 2004, 43: 5294.
[40] Soh N, Katayama Y, Maeda M. Analyst, 2001, 126: 564.
[41] Smith R C, Tennyson A G, Lippard S J. Inorg. Chem., 2006, 45: 6222.
[42] Lim M H, Lippard S J. Inorg. Chem., 2004, 43: 6366.
[43] (a) Lim M H, Wong B A, Pitcock W H Jr, Mokshagundam D, Baik M H, Lippard S J. J. Am. Chem. Soc., 2006, 128: 14364. (b) Lim M H, Xu D, Lippard S J. Nat. Chem. Biol., 2006, 2: 375.
[44] Pluth M D, McQuade L E, Lippard S J. Org. Lett., 2010, 12: 2318.
[45] Pluth M D, Chan M R, McQuade L E, Lippard S J. Inorg. Chem., 2011, 50: 9385.
[46] (a) McQuade L E, Lippard S J. Inorg. Chem., 2010, 49: 7464. (b) McQuade L E, Ma J, Lowe G, Ghatpande A, Gelperin A. Proc. Natl. Acad. Sci. U. S. A., 2010, 107: 8525.
[47] Hu X Y, Wang J, Zhu X, Dong D P, Zhang X L, Wu S, Duan C Y. Chem. Commun., 2011, 47: 11507.
[48] Hu X Y, Zhang X L, Song H L, He C, Bao Y M, Tang Q, Duan C Y. Tetrahedron, 2012, 68: 8371.
[49] Shiue T W, Chen Y H, Wu C M, Singh G, Chen H Y, Hung C H, Liaw W F, Wang Y M. Inorg. Chem., 2012, 51: 5400.
[50] Ferrer-Sueta G, Radi R. ACS Chem. Biol., 2009, 4: 161.
[51] Pacher P, Beckman J S, Liaudet L. Physiol. Rev., 2007, 87: 315.
[52] Surmeli N B, Litterman N K, Miller A F, Groves J T. J. Am. Chem. Soc., 2010, 132: 17174.
[53] Siddiqui M R, Komarova Y A, Vogel S M, Gao X, Bonini M G, Rajasingh J, Zhao Y Y, Brovkovych V, Malik A B. J. Cell. Biol., 2011, 193: 841.
[54] Kawasaki H, Ikeda K, Shigenaga A, Baba T, Takamori K, Ogawa H, Yamakura F. Free Radic. Biol., 2011, 50: 419.
[55] Sawa T, Zaki M H, Okamoto T, Akuta T, Tokutomi Y, Kim-Mitsuyama S, Ihara H, Kobayashi A, Yamamoto M, Fujii S, Arimoto H, Akaike T. Nat. Chem. Biol., 2007, 3: 727.
[56] Khoo N K H, Freeman B A. Curr. Opin. Pharmacol., 2010, 10:179.
[57] Fraszczak J, Trad M, Janikashvili N, Cathelin D, Lakomy D, Granci V, Morizot A, Audia S, Micheau O, Lagrost L, Katsanis E, Solary E, Larmonier N, Bonnotte B. J. Immunol., 2010, 184: 1876.
[58] Ieda N, Nakagawa H, Peng T, Yang D, Suzuki T, Miyata N. J. Am. Chem. Soc., 2012, 134: 2563.
[59] Beckman J S, Beckman T W, Chen J, Marshall P A, Freeman B A. Proc. Natl. Acad. Sci. U. S. A., 1990, 87: 1620.
[60] Gryglewski R J, Palmer R M, Moncada S. Nature, 1986, 320: 454.
[61] Radi R, Peluffo G, Alvarez M N, Naviliat M, Cayota A. Free Radic. Biol. Med., 2001, 30: 463.
[62] Yu F B, Li P, Li G Y, Zhao G J, Chu T S, Han K L. J. Am. Chem. Soc., 2011, 33: 11030.
[63] Wang B S, Yu F B, Li P, Sun X F, Han K L. Dyes & Pigm., 2013, 96: 383.
[64] Xu K H, Chen H C, Tian J W, Ding B Y, Xie Y X, Qiang M M, Tang B. Chem. Commun., 2011, 47: 9468.
[65] Yu F B, Li P, Wang B S, Han K L. J. Am. Chem. Soc., 2013, 135: 7674.
[66] Zielonka J, Sikora A, Joseph J, Kalyanaraman B. J. Biol. Chem., 2010, 285: 14210.
[67] Yu F B, Song P, Li P, Wang B S, Han K L. Analyst, 2012, 137: 3740.
[68] Zhang Q J, Zhu Z C, Zheng Y L, Cheng J G, Zhang N, Long Y T, Zheng J, Qian X H, Yang Y J. J. Am. Chem. Soc., 2012, 134: 18479.
[69] Ma J J, Wu J S, Liu W M, Wang P F, Fan Z Y. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 94: 340.
[70] Yang D, Wang H L, Sun Z N, Chung N W, Shen J G. J. Am. Chem. Soc., 2006, 128: 6004.
[71] Sun Z N, Wang H L, Liu F Q, Chen Y, Tam P K, Yang D. Org. Lett., 2009, 11: 1887.
[72] Peng T, Yang D. Org. Lett., 2010, 12:4932.
[73] Lin W, Buccella D, Lippard S J. J. Am. Chem. Soc., 2013, 135: 13512.
[74] Lin K K, Wu S C, Hsu K M, Hung C H, Liaw W F, Wang Y M. Org. Lett., 2013, 15: 4242.
[75] Song C H, Ye Z Q, Wang G L, Yuan J L, Guan Y L. Chem. Eur. J., 2010, 16: 6464.
[76] Fukuto J M, Dutton A S, Houk K N. Chem. Bio. Chem., 2005, 6: 612.
[77] Irvine J C, Ritchie R H, Favaloro J L, Andrews K L, Widdop R E, Kemp-Harper B K. Trends Pharmacol. Sci., 2008, 29: 601.
[78] Murphy M E, Sies H. Proc. Natl. Acad. Sci. U.S.A., 1991, 88: 10860.
[79] Feelisch M. Proc. Natl. Acad. Sci. U. S. A., 2003, 100: 4978.
[80] Fukuto J M, Bartberger M D, Dutton A S, Paolocci N, Wink D A, Houk K N. Chem. Res. Toxicol., 2005, 18: 790.
[81] Espey M G, Miranda K M, Thomas D D, Wink D A. Radical. Biol. Med., 2002, 33: 827.
[82] DeMaster E G, Redfern B, Nagasawa H T. Biochem. Pharmacol., 1998, 55: 2007.
[83] Rosenthal J, Lippard S J. J.Am. Chem. Soc., 2010, 132: 5536.
[84] Apfel U P, Buccella D, Wilson J J, Lippard S J. Inorg. Chem., 2013, 52: 3285.
[85] Zhou Y, Liu K, Li J Y, Fang Y, Zhao T C, Yao C. Org. Lett., 2011, 13: 1290.
[86] Cline M R. Toscano J P. J. Phys. Org. Chem., 2011, 24: 993.
[87] Kawai K, Ieda N, Aizawa K, Suzuki T, Miyata N, Nakagawa H. J. Am. Chem. Soc., 2013, 135: 12690.
[88] Gladwin M T, Schechter A N, Kim-Shapiro D B, Patel R P, Hogg N, Shiva S, Cannon R O, Kelm M, Wink D A, Espey M G, Oldfield E H, Pluta R M, Freeman B A, Lancaster J R Jr, Feelisch M, Lundberg J O. Nat. Chem. Biol., 2005, 1: 308.
[89] Burden E H W. J. Analyst, 1961, 86: 429.
[90] Wolff I A, Wasserman A E. Science, 1972, 177: 15.
[91] Ghosh A, Das P, Saha S, Banerjee T, Bhatt H B, Das A. Inorganica Chimica Acta, 2011, 372: 115.
[92] Kumar V, Banerjee M, Chatterjee A. Talanta, 2012, 15: 610.
[93] Zheng H, Shang G Q, Yang S Y, Gao X, Xu J G. Org. Lett., 2008, 10: 2357.
[94] Dey R, Chatterjee T, Ranu B C. Tetrahedron Lett., 2011, 52: 461.
[95] Qinghai S, Bats J W, Schmittel M. Inorg. Chem., 2011, 50: 10531.
[96] Adarsh N, Shanmugasundaram M, Ramaiah D. Anal. Chem., 2013, 85: 10008.
[97] Kirsch M, Korth H G. Sustmann R, de Groot H. Biol. Chem., 2002, 383: 389.
[98] Byun J, Mueller D M, Fabjan J S, Heinecke J W. FEBS Lett., 1999, 455: 243.
[99] Yan Y, Krishnakumar S, Yu H, Ramishetti S, Deng L W, Wang S, Huang L, Huang D. J. Am. Chem. Soc., 2013, 135: 5312.

[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[3] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[4] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[5] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[6] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[7] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[8] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[9] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[10] 李斌, 付艳艳, 程建功. 检测有机磷神经毒剂及模拟物的荧光探针[J]. 化学进展, 2021, 33(9): 1461-1472.
[11] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[12] 任春平, 聂雯, 冷俊强, 刘振波. 反应型次氯酸荧光探针[J]. 化学进展, 2021, 33(6): 942-957.
[13] 侯晓涵, 刘胜男, 高清志. 小分子荧光探针在绿色农药开发中的应用[J]. 化学进展, 2021, 33(6): 1035-1043.
[14] 许惠凤, 董永强, 朱希, 余丽双. 新型二维材料MXene在生物医学的应用[J]. 化学进展, 2021, 33(5): 752-766.
[15] 党耶城, 冯杨振, 陈杜刚. 红光/近红外光硫醇荧光探针[J]. 化学进展, 2021, 33(5): 868-882.
阅读次数
全文


摘要

检测活性氮物种的荧光探针