English
新闻公告
More
化学进展 2014, Vol. 26 Issue (05): 727-736 DOI: 10.7536/PC131015 前一篇   后一篇

• 综述与评论 •

乙醇电催化氧化

饶路, 姜艳霞*, 张斌伟, 游乐星, 李崭虹, 孙世刚*   

  1. 固体表面物理化学国家重点实验室 厦门大学化学化工学院化学系 厦门 361005
  • 收稿日期:2013-11-01 修回日期:2013-12-01 出版日期:2014-05-15 发布日期:2014-03-13
  • 通讯作者: 姜艳霞,e-mail:yxjiang@xmu.edu.cn;孙世刚,e-mail:sgsun@xmu.edu.cn E-mail:yxjiang@xmu.edu.cn;sgsun@xmu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 21273180,60936003,21021002,21361140374)资助

Electrocatalytic Oxidation of Ethanol

Rao Lu, Jiang Yanxia*, Zhang Binwei, You Lexing, Li Zhanhong, Sun Shigang*   

  1. State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
  • Received:2013-11-01 Revised:2013-12-01 Online:2014-05-15 Published:2014-03-13
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No.21273180, 60936003, 21021002, 21361140374)

乙醇作为典型的可再生绿色环保型能源,具有易储存和携带、较高的能量密度、易生产等优点而备受关注。本文详细介绍了近年来国内外乙醇电催化氧化研究的重要进展,着重叙述了乙醇电催化氧化的反应机理,不同催化剂材料对乙醇电氧化的优缺点,进一步探讨了影响乙醇电氧化反应活性和选择性的因素,总结了提高乙醇电氧化活性和选择性的策略,最后,对其今后可能的研究方向进行了展望。

As a typically renewable environmental fuel, ethanol has numerous advantages, including easy to storage and production, and high energy density. Therefore, it attracts an extensive attention. In this review we detailedly introduced the significant progress on ethanol electrocatalytic oxidation in recent years. The thermodynamics process, reaction mechanism of ethanol electrooxidation, and the advantages and disadvantages of different electrocatalysts are emphatically described. Furthermore, the factors affecting the reaction activity and selectivity of ethanol electrooxidation, such as support, size, structure, alloy and additive, are discussed. Also, the strategy to enhance activity and selectivity of ethanol electrooxidation is summarized. In the end, we prospect the future of possible research direction of ethanol electrooxidation.

Contents
1 Introduction
2 Thermodynamics process and reaction mechanism of ethanol electrooxidation
2.1 Thermodynamics process
2.2 Reaction mechanism
3 Different kinds of electrocatalysts
3.1 Binary electrocatalysts
3.2 Ternary electrocatalysts
4 Factors affecting ethanol electrooxidation
4.1 Support effect
4.2 Size effect
4.3 Structure effect
4.4 Alloy effect
4.5 Additive effect
5 The strategy to enhance activity and selectivity of ethanol electrooxidation
6 Conclusions and outlook

中图分类号: 

()

[1] Liu W, Lund H, Mathiesen B V. Energy Policy, 2013, 58: 347.
[2] Andujar J M, Segura F. Renewable and Sustainable Energy Reviews, 2009, 13: 2309.
[3] Wee J H. Renewable and Sustainable Energy Reviews, 2007, 11: 1720.
[4] Campagnolo M C, Marozzi C A, Chialvo A C, Gennero de Chialvo M R. Journal of Power Sources, 2013, 239: 207.
[5] Salomé S, Rego R, Querejeta A, Alcaide F, Cristina Oliveira M. Electrochimica Acta, 2013, 106: 516.
[6] Annett Rabis P R, Thomas J, Schmidt A. ACS Catalysis, 2012, 2: 864.
[7] Hu C G, Cheng H H, Zhao Y, Hu Y, Dai L M, Qu L T. Advanced Materials, 2012, 24: 5493.
[8] Brouzgou A, Tsiakaras P. Journal of Applied Electrochemistry, 2013, 43: 119.
[9] Santasalo Aarnio A, Tuomi S, Jalkanen K, Kontturi K, Kallio T. Electrochimica Acta, 2013, 87: 730.
[10] Liu H, Song C, Zhang L, Zhang J, Wang H, Wilkinson D P. Journal of Power Sources, 2006, 155: 95.
[11] Wang J Y, Zhang H X, Jiang K, Cai W B. Journal of the American Chemical Society, 2011, 133: 14876.
[12] Selvaraj V, Alagar M, Kumar K. Applied Catalysis B: Environmental, 2007, 75: 129.
[13] 黄志忠(Huang Z Z). 厦门大学硕士论文(Master Dissertation of Xiamen University), 2009.
[14] Wee J H. Renewable and Sustainable Energy Reviews, 2007, 11:1720.
[15] Song S, Tsiakaras P. Applied Catalysis B: Environmental, 2006, 63: 187.
[16] Zhang X F, Tian Z Q, Shen P K. Electrochemistry Communications, 2013, 28: 9.
[17] Lin J L, Ren J, Tian N, Zhou Z Y, Sun S G. Journal of the Electroanalytical Chemistry, 2013, 688: 165.
[18] Qi Z, Kaufman A. Journal of Power Sources 2003, 118: 54.
[19] Holade Y, Morais C, Arrii-Clacens S, Servat K, Napporn T W, Kokoh K B. Electrocatalysis, 2013, 4: 167.
[20] Dutta A, Datta J. The Journal of Physical Chemistry C, 2012, 116: 25677.
[21] Lv X, Xu Z, Yan Z, Li X. Electrocatalysis, 2011, 2: 82.
[22] Modibedi R M, Masombuka T, Mathe M K. International Journal of Hydrogen Energy, 2011, 36: 4664.
[23] Wei Y C, Liu C W, Kang W D, Lai C M, Tsai L D, Wang K W. Journal of Electroanalytical Chemistry, 2011, 660: 64.
[24] Nguyen S T, Yang Y, Wang X. Applied Catalysis B: Environmental, 2012, 113/114: 261.
[25] Cheng F, Dai X, Wang H, Jiang S P, Zhang M, Xu C. Electrochimica Acta, 2010, 55: 2295.
[26] Huang Z, Zhou H, Li C, Zeng F, Fu C, Kuang Y. Journal of Materials Chemistry, 2012, 22: 1781.
[27] Kutz R B, Braunschweig B, Mukherjee P, Behrens R L, Dlott D D, Wieckowski A. Journal of Catalysis, 2011, 278: 181.
[28] Christensen P A, Jones S W M, Hamnett A. Physical Chemistry Chemical Physics, 2013, 15: 17268.
[29] Raskó J, Dömök M, Baán K, Erdöhelyi A. Applied Catalysis A: General, 2006, 299: 202.
[30] Ke X, Deng L L, Shen P K, Cui G F. Chem. Res. Chinese Universities, 2010, 26: 443.
[31] Lai S C S, Kleijn S E F, Oeztuerk F T Z, Vellinga V C, Koning J, Rodriguez P, Koper M T M. Catalysis Today, 2010, 154: 92.
[32] 李艳艳(Li Y Y), 饶路(Rao L), 姜艳霞(Jiang Y X), 刘子立(Liu Z L), 贺春兰(He C L), 孙士刚(Sun S G).高等学校化学学报(Chemical Journal of Chinese Universities), 2012, 34: 408.
[33] Kavanagh R, Cao X M, Lin W F, Hardacre C, Hu P. Angewandte Chemie International Edition, 2012, 51: 1572.
[34] Del Colle V, Berná A, Tremiliosi-Filho G, Herrero E, Feliu J M. Physical Chemistry Chemical Physics, 2008, 10: 3766.
[35] Pachecosantos V, Delcolle V, Delima R, Tremiliosifilho G. Electrochimica Acta, 2007, 52: 2376.
[36] Yuan Q, Zhou Z, Zhuang J, Wang X. Chemistry of Materials, 2010, 22: 2395.
[37] Freitas R G, Pereira E C, Christensen P A. Electrochemistry Communications, 2011, 13: 1147.
[38] Camara G A, Iwasita T. Journal of Electroanalytical Chemistry, 2005, 578: 315.
[39] Del Colle V, Souza-Garcia J, Tremiliosi-Filho G, Herrero E, Feliu J M. Physical Chemistry Chemical Physics, 2011, 13: 12163.
[40] Vigier F, Coutanceau C, Hahn F, Belgsir E M, Lamy C. Journal of Electroanalytical Chemistry, 2004, 563: 81.
[41] Souza J P I, Bergamaski K, Gonzalez E R, Nart F C. Journal of Physical Chemistry B, 2002, 106:9825.
[42] Lima F, Gonzalez E. Electrochimica Acta, 2008, 53(6): 2963.
[43] García-Rodríguez S, Rojas S, Pea M A, Fierro J L G, Baranton S, Léger J M. Applied Catalysis B: Environmental, 2011, 106: 520.
[44] Kowal A, Shao M, Sasaki K, Vukmirovic M B, Zhang J, Marinkovic N S, Liu P, Adzic R R. Nature Materials, 2009, 8: 325.
[45] Li M, Sasaki K, Marinkovic N, Su D, Korach E, Liu P, Adzic R R. Electrochimica Acta, 2010, 55: 4331.
[46] Li M, Cullen D A, Sasaki K, Marinkovic N S, More K, Adzic R R. Journal of the American Chemical Society, 2013, 135: 132.
[47] Yu X, Ye S. Journal of Power Sources, 2007, 172: 133.
[48] Yu X, Ye S. Journal of Power Sources, 2007, 172: 145.
[49] Watanabe M, Sei H, Stonehart P. Journal of Electroanalytical Chemistry, 1989, 261: 375.
[50] Cha S Y, Lee W M. Journal of the Electrochemical Society, 1999, 146: 4055.
[51] 唐亚文(Tang Y W), 马国仙(Ma G X), 周益明(Zhou Y M), 包建春(Bao J C), 陆天虹(Lu T H).物理化学学报(Acta Physico-Chimica Sinica), 2008, 24(9): 1615.
[52] FlavioColmati G T F, Ernesto R, Gonzalez, Antonio B, Enrique H, Feliu J M. Faraday Discuss, 2008, 140: 379.
[53] Wang H F, Liu Z P. Journal of the American Chemical Society, 2008, 130: 10996.
[54] David J, Tarnowski C K. Journal of Physical Chemistry B, 1997, 101: 253.
[55] Tian N, Zhou Z Y, Sun S G, Ding Y, Wang Z L. Science, 2007, 36: 732.
[56] Zhou Z Y, Huang Z Z, Chen D J, Wang Q, Tian N, Sun S G. Angewandte Chemie International Edition, 2010, 49: 411.
[57] Li M, Liu P, Adzic R R. The Journal of Phyical Chemistry Letters, 2012, 3: 3480.
[58] He Q, Shyam B, Macounová K, Krtil P, Ramaker D, Mukerjee S. Journal of the American Chemical Society, 2012, 134: 8655.
[59] Bligaard T, Nørskov J K. Electrochimica Acta, 2007, 52: 5512.
[60] Zhou Z Y, Tian N, Li J T, Broadwell I, Sun S G. Chem. Soc. Rev., 2011, 40: 4167.
[61] Li Y Y, Jiang Y X, Chen M H, Liao H G, Huang R, Zhou Z Y, Tian N, Sun S G. Chemical Communication, 2012, 48: 9531.
[62] Cantane D A, Oliveira F E R, Santos S F, Lima F H B. Applied Catalysis B: Environmental, 2013, 136: 351.
[63] Halder A, Jia Q Y, Trahan M, Mukerjee S. Electrochimica Acta, 2013, 108: 288.
[64] Mavrikakis M, Doren D J, Barteau M A. The Journal of Physical Chemistry B, 1998, 102: 394.

[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 国纪良, 彭剑飞, 宋爱楠, 张进生, 杜卓菲, 毛洪钧. 机动车尾气二次有机气溶胶生成研究[J]. 化学进展, 2023, 35(1): 177-188.
[6] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[7] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[8] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[9] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[10] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[11] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[12] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[13] 王琼, 肖康. 中国城市住宅室内甲醛浓度及影响因素[J]. 化学进展, 2022, 34(3): 743-772.
[14] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[15] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
阅读次数
全文


摘要

乙醇电催化氧化