English
新闻公告
More
化学进展 2014, Vol. 26 Issue (04): 487-501 DOI: 10.7536/PC130939 前一篇   后一篇

• 特约稿 •

基于π体系的超分子功能材料的制备与应用研究

许良1,2, 李勇军*1, 李玉良*1   

  1. 1. 中国科学院化学研究所 北京分子科学国家实验室 有机固体院重点实验室 北京 100190;
    2. 中国科学院大学 100049
  • 收稿日期:2013-09-01 修回日期:2013-11-01 出版日期:2014-04-15 发布日期:2014-01-20
  • 通讯作者: 李勇军,e-mail:ylli@iccas.ac.cn;李玉良,e-mail:liyj@iccas.ac.cn E-mail:ylli@iccas.ac.cn;liyj@iccas.ac.cn

Preparation and Application of Supramolecular Functional Materials Based on π System

Xu Liang1,2, Li Yongjun*1, Li Yuliang*1   

  1. 1. CAS Key Laboratory of Organic Solid, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2013-09-01 Revised:2013-11-01 Online:2014-04-15 Published:2014-01-20

近年来,聚集态结构材料制备方法的快速发展和应用领域的不断拓宽使得构建更小、更快、功能性强、性能优越的分子器件成为可能。π体系有机共轭分子作为构筑纳米结构的一个新颖单元,越来越吸引人们的注意。本文从纳米材料的概念和特点出发,介绍了基于π体系有机共轭分子的超分子功能材料以及无机/有机杂化功能材料体系的构建方法。我们重点讨论了经典自组装的方法,并且进一步探讨了自组装过程中常见的几种驱动力对形成聚集态结构起到的重要作用。在材料制备的基础之上,我们还探讨了各种功能化器件的构建以及它们在场发射、光电探测、太阳能电池、传感器、非线性光学材料、光波导材料等领域的广泛应用。

Recent years have witnessed a rapid development of the preparation methods for aggregation structures and have witnessed a continuous expansion of the application areas, which afford the opportunity to construct molecular devices with smaller size, stronger function and better performance. The organic conjugated molecules based on π system have attracted an increasing attention as a novel unit for the building of nanostructures. In this paper, beginning with the introduction of the concept and characteristic of nanomaterials, we discuss the construction methods for supramolecular functional materials based on organic π- conjugated and inorganic/organic hybrid systems. For organic π- conjugated system, the methods include vapor deposition, template and classic self-assembly. For inorganic/organic hybrid system, the methods include sol-gel, intercalation, blending, template and supramolecular self-assembly. Among these methods, we focus on the classic self-assembly one for organic system. In the process of self-assembly, several driving forces have important influence on the aggregation morphologies, including π-π stacking, hydrogen bonding, electrostatic interaction, dipole-dipole interaction, metal coordination, hydrophilic and hydrophobic interactions. Although in this process, one or two driving force predominate, several driving forces are involved actually. On the basis of the preparation of nanomaterials, we discuss the construction of functional molecular devices and their wide applications in the fields of field emission, photoelectric detection, solar cells, sensors, nonlinear optical and optical waveguide materials.

Contents
1 Introduction
2 Supramolecular functional materials based on organic molecules
2.1 The preparation of supramolecular functional materials based on organic molecules
2.2 The driving forces of self-assembly
2.3 The applications of supramolecular functional materials based on organic molecules
3 Supramolecular functional materials based on inorganic/organic hybrid systems
3.1 The preparation of supramolecular functional materials based on inorganic/organic hybrid systems
3.2 The applications of supramolecular functional materials based on inorganic/organic hybrid systems
4 Outlook

中图分类号: 

()

[1] 白春礼(BaiCL). 科学通报(China Sci.Bull.), 2001, 462: 9.
[2] Liu H, Xu J, Li Y, Li Y. Acc. Chem. Res., 2010, 43: 1496.
[3] Liu H, Li Y, Xiao S, Gan H, Jiu T, Li H, Jiang L, Zhu D, Yu D, Xiang B, Chen Y. J. Am. Chem. Soc., 2003, 125: 10794.
[4] Liu H, Zhao Q, Li Y, Liu Y, Lu F, Zhuang J, Wang S, Jiang L, Zhu D, Yu D, Chi L. J. Am. Chem. Soc., 2005, 127: 1120.
[5] Liu H, Li Y, Xiao S, Li H, Jiang L, Zhu D, Xiang B, Chen Y, Yu D. J. Phys. Chem. B, 2004, 108: 7744.
[6] Cheung C H, Djuriši D? A B, Leung Y H, Wei Z F, Xu S J, Chan W K. Chem. Phys. Lett., 2004, 394: 203.
[7] Zhao Y S, Di C, Yang W, Yu G, Liu Y, Yao J. Adv. Funct. Mater., 2006, 16: 1985.
[8] Zhao Y S, Xiao D, Yang W, Peng A, Yao J. Chem. Mater., 2006, 18: 2302.
[9] Liu H, Li Y, Jiang L, Luo H, Xiao S, Fang H, Li H, Zhu D, Yu D, Xu J, Xiang B. J. Am. Chem. Soc., 2002, 124: 13370.
[10] Gan H, Liu H, Li Y, Gan L, Jiang L, Jiu T, Wang N, He X, Zhu D. Carbon, 2005, 43: 205.
[11] Chen N, Huang C, Yang W, Chen S, Liu H, Li Y, Li Y. J. Phys. Chem. C, 2010, 114: 12982.
[12] Hu J S, Guo Y, Liang H P, Wan L J, Jiang L. J. Am. Chem. Soc., 2005, 127: 17090.
[13] Nalwa H S, Kakuta A, Mukoh A, Kasai H, Okada S, Oikawa H, Nakanishi H, Matsuda H. Adv. Mater., 1993, 5: 758.
[14] Kasai H, NalwaH S, Oikawa H, Okada S, Matsuda H, Minami N, Kakuta A, Ono K, Mukoh A, Nakansishi H. Jpn. J. Appl. Phys., 1992, 31: L1132.
[15] Hoeben F J M, Jonkheijm P, Meijer E W, Schenning A P H J. Chem. Rev., 2005, 105: 1491.
[16] Yang B, Ma Y G, Shen J C. Chem. J. Chinese U., 2008, 29: 2643.
[17] Li Y, Li X, Li Y, Liu H, Wang S, Gan H, Li J, Wang N, He X, Zhu D. Angew. Chem. Int. Ed., 2006, 45: 3639.
[18] Huang C, Wen L, Liu H, Li Y, Liu X, Yuan M, Zhai J, Jiang L, Zhu D. Adv. Mater., 2009, 21: 1721.
[19] Huang C, Li Y, Yang J E, Cheng N, Liu H, Li Y. Chem. Commun., 2010, 46: 3161.
[20] Simard M, Su D, Wuest J D. J. Am. Chem. Soc., 1991, 113: 4696.
[21] Xiao S, Li Y, Fang H, Li H, Liu H, Shi Z, Jiang L, Zhu D. Org. Lett., 2002, 4: 3063.
[22] Shi Z, Li Y, Gong H, Liu M, Xiao S, Liu H, Li H, Xiao S, Zhu D. Org. Lett., 2002, 4: 1179.
[23] Fang H, Wang S, Xiao S, Yang J, Li Y, Shi Z, Li H, Liu H, Xiao S, Zhu D. Chem. Mater., 2003, 15: 1593.
[24] Decher G, Hong J D. Macromol. Symp., 1991, 46: 321.
[25] Li Y J, Zhao Y J, Flood A H, Liu C, Liu H B, Li Y L. Chem. Eur. J., 2011, 17: 7499.
[26] Zhang C, Zhang X, Zhang X, Ou X, Zhang W, Jie J, Chang J C, Lee C S, Lee S T. Adv. Mater., 2009, 21: 4172.
[27] Zhang X, Jie J, Zhang W, Zhang C, Luo L, He Z, Zhang X, Zhang W, Lee C, Lee S. Adv. Mater., 2008, 20: 2427.
[28] Zhang C, Zhang X, Zhang X, Fan X, Jie J, Chang J C, Lee C S, Zhang W, Lee S T. Adv. Mater., 2008, 20: 1716.
[29] Xu J, Wen L, Zhou W, Lv J, Guo Y, Zhu M, Liu H, Li Y, Jiang L. J. Phys. Chem. C, 2009, 113: 5924.
[30] Xu J, Liu X, Lv J, Zhu M, Huang C, Zhou W, Yin X, Liu H, Li Y, Ye J. Langmuir, 2008, 24: 4231.
[31] Tschierske C. Angew. Chem. Int. Ed., 2000, 39: 2454.
[32] Zhang J, Li Y, Yang W, Lai SW, Zhou C, Liu H, Che C M, Li Y. Chem. Commun., 2012, 48: 3602.
[33] Hubbard J B, Silin V, Plant A L. Biophys. Chem., 1998, 75: 163.
[34] Moreau J J E, Vellutini L, Wong Chi Man M, Bied C, Dieudonné P, Bantignies J L, Sauvajol J L. Chem. Eur. J., 2005, 11: 1527.
[35] Zhou C, Chen N, Yang J, Liu H, Li Y. Macromol. Rapid Commun., 2012, 33: 688.
[36] Musa I, Munindrasdasa D A I, Amaratunga G A J, Eccleston W. Nature, 1998, 395: 362.
[37] Chiu J J, Kei C C, Perng T P, Wang W S. Adv. Mater., 2003, 15: 1361.
[38] Gan H, Liu H, Li Y, Zhao Q, Li Y, Wang S, Jiu T, Wang N, He X, Yu D, Zhu D. J. Am. Chem. Soc., 2005, 127: 12452.
[39] Cui S, Li Y, Guo Y, Liu H, Song Y, Xu J, Lv J, Zhu M, Zhu D. Adv. Mater., 2008, 20: 309.
[40] Li G, Li Y, Qian X, Liu H, Lin H, Chen N, Li Y. J. Phys. Chem. C, 2011, 115: 2611.
[41] Delaire J A, Nakatani K. Chem. Rev., 2000, 100: 1817.
[42] Huang C, Li Y, Song Y, Li Y, Liu H, Zhu D. Adv. Mater., 2010, 22: 3532.
[43] Xu J, Semin S, Niedzialek D, Kouwer P H J, Fron E, Coutino E, Savoini M, Li Y, Hofkens J, Uji-I H, Beljonne D, Rasing T, Rowan A E. Adv. Mater., 2013, 25: 2084.
[44] Chen S, Qin Z, Liu T, Wu X, Li Y, Liu H, Song Y, Li Y. Phys. Chem. Chem. Phys., 2013, 15: 12660.
[45] Chen S, Chen N, Yan Y L, Liu T, Yu Y, Li Y, Liu H, Zhao Y S, Li Y. Chem. Commun., 2012, 48: 9011.
[46] Liu T, Li Y, Yan Y, Li Y, Yu Y, Chen N, Chen S, Liu C, Zhao Y, Liu H. J. Phys. Chem. C, 2012, 116: 14134.
[47] Yuan M, Li Y, Li J, Li C, Liu X, Lv J, Xu J, Liu H, Wang S, Zhu D. Org. Lett., 2007, 9: 2313.
[48] Zhu M, Yuan M, Liu X, Xu J, Lv J, Huang C, Liu H, Li Y, Wang S, Zhu D. Org. Lett., 2008, 10: 1481.
[49] Xu L, Li Y, Yu Y, Liu T, Cheng S, Liu H, Li Y. Org. Biomol. Chem., 2012, 10: 4375.
[50] Zheng H, Li Y, Liu H, Yin X, Li Y. Chem. Soc. Rev., 2011, 40: 4506.
[51] Chiang C L, Ma C C M. Eur. Polym. J., 2002, 38: 2219.
[52] Corma A, Díaz U, García T, Sastre G, Velty A. J. Am. Chem. Soc., 2010, 132: 15011.
[53] Yakuphanoglu F. Sensor Actuat A-Phys., 2008, 141: 383.
[54] Possin G E. Rev. Sci. Instrum. , 1970, 41: 772.
[55] Park S, Lim J H, Chung S W, Mirkin C A. Science, 2004, 303: 348.
[56] Guo Y, Tang Q, Liu H, Zhang Y, Li Y, Hu W, Wang S, Zhu D. J. Am. Chem. Soc., 2008, 130: 9198.
[57] Liu H, Zuo Z, Guo Y, Li Y, Li Y. Angew. Chem. Int. Ed., 2010, 49: 2705.
[58] Gautam U K, Fang X, Bando Y, Zhan J, Golberg D. ACS Nano, 2008, 2: 1015.
[59] Liu H, Cui S, Guo Y, Li Y, Huang C, Zuo Z, Yin X, Song Y, Zhu D. J. Mater. Chem., 2009, 19: 1031.
[60] Guo Y, Liu H, Li Y, Li G, Zhao Y, Song Y, Li Y. J. Phys. Chem. C, 2009, 113: 12669.
[61] Lin H, Liu H, Qian X, Lai S W, Li Y, Chen N, Ouyang C, Che C M, Li Y. Inorg. Chem., 2011, 50: 7749.
[62] Chen N, Qian X, Lin H, Liu H, Li Y, Li Y. Dalton Trans., 2011, 40: 10804.
[63] Palaniappan K, Murphy J W, Khanam N, Horvath J, Alshareef H, QuevedoL M, Biewer M C, Park S Y, Kim M J, Gnade B E, Stefan M C. Macromolecules, 2009, 42: 3845.
[64] Dayal S, Reese M O, Ferguson A J, Ginley D S, Rumbles G, Kopidakis N. Adv. Funct. Mater., 2010, 20: 2629.
[65] Van Hal P A, Wienk M M, Kroon J M, Verhees W J H, Slooff L H, van Gennip W J H, Jonkheijm P, Janssen R A J. Adv. Mater., 2003, 15: 118.
[66] Ravirajan P, Haque S A, Durrant J R, Bradley D D C, Nelson J. Adv. Funct. Mater., 2005, 15: 609.
[67] Lin Y Y, Chu T H, Li S S, Chuang C H, Chang C H, Su W F, Chang C P, Chu M W, Chen C W. J. Am. Chem. Soc., 2009, 131: 3644.
[68] Beek W J E, Wienk M M, Kemerink M, Yang X, Janssen R A J. J. Phys. Chem. B, 2005, 109: 9505.
[69] Beek W J E, Wienk M M, Janssen R A J. Adv. Funct. Mater., 2006, 16: 1112.
[70] Gur I, Fromer N A, Chen CP, Kanaras A G, Alivisatos A P. Nano Lett., 2006, 7: 409.
[71] Guo Y, Zhang Y, Liu H, Lai SW, Li Y, Li Y, Hu W, Wang S, Che C M, Zhu D. J. Phys. Chem. Lett., 2009, 1: 327.
[72] Evans S D, Johnson S R, Cheng Y L, Shen T. J. Mater. Chem., 2000, 10: 183.
[73] Cho E S, Kim J, Tejerina B, Hermans T M, Jiang H, Nakanishi H, Yu M, Patashinski A Z, Glotzer S C, Stellacci F, Grzybowski B A. Nat. Mater., 2012, 11: 978.
[74] Wang K, Qian X, Zhang L, Li Y, Liu H. ACS Appl. Mater. Interfaces, 2013, 5: 5825.
[75] Thomas K G, Kamat P V. Acc. Chem. Res., 2003, 36: 888.
[76] He X, Liu H, Li Y, Wang S, Li Y, Wang N, Xiao J, Xu X, Zhu D. Adv. Mater., 2005, 17: 2811.

[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[3] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[4] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[5] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[6] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[7] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[8] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[9] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[10] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[11] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[12] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.
[13] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[14] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
[15] 张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 碳化硅块状气凝胶的制备及应用[J]. 化学进展, 2021, 33(9): 1511-1524.