English
新闻公告
More
化学进展 2014, Vol. 26 Issue (04): 512-521 DOI: 10.7536/PC130925 前一篇   后一篇

• 综述与评论 •

微量组合催化剂筛选技术

章豪1, 方群*1, 范杰*2   

  1. 1. 浙江大学化学系微分析系统研究所 杭州 310058;
    2. 浙江省应用化学重点实验室 浙江大学化学系高新材料研究中心 杭州 310027
  • 收稿日期:2013-09-01 修回日期:2013-11-01 出版日期:2014-04-15 发布日期:2014-01-20
  • 通讯作者: 方群,e-mail:fangqun@zju.edu.cn;范杰,e-mail:jfan@zju.edu.cn E-mail:fangqun@zju.edu.cn;jfan@zju.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 20825517,20873122,21003106)资助

Micro-Scale Combinatorial Catalyst Screening Techniques

Zhang Hao1, Fang Qun*1, Fan Jie*2   

  1. 1. Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China;
    2. Key Lab of Applied Chemistry of Zhejiang Province, Center for Chemistry of High-Performance and Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
  • Received:2013-09-01 Revised:2013-11-01 Online:2014-04-15 Published:2014-01-20
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No.20825517, 20873122, 21003106)

催化剂的研究对于化工、环境保护和可持续能源等领域的发展起着至关重要的作用。传统的催化剂筛选方法步骤繁多,费时费力。微量组合催化剂筛选技术的出现,为催化剂的筛选和优化研究提供了高通量、低消耗、集成化的重要手段。本文综述了各种微量组合催化技术的催化剂筛选方法,主要包括多孔板(multi-well plate)、微阵列(microarray)和多通道反应器(multi-channel microreactor)技术等。

The catalyst discovery is of vital importance in many applications including chemical industry, environmental protection, and the development of sustainable energy. Currently, catalyst development is still a laborious and time-consuming work. The micro-combinatorial catalyst screening technique provides various advantages including high throughput, low consumption, and high integration density. It is applicable to large number of initial catalyst screening and subsequent optimization. This article reviews the recent progress of various micro-scale combinatorial catalyst screening techniques, including multi-well plate, microarray, multi-channel microreactor-based techniques.

Contents
1 Introduction
2 Micro-scale combinatorial catalyst screening techniques
2.1 Multi-well plate
2.2 Microarray
2.3 Multi-channel microreactor
3 Conclusion

中图分类号: 

()

[1] Disalvo F J. Science, 1990, 247: 649.
[2] Newsam J M, Schuth F. Biotechnol. Bioeng., 1999, 61: 203.
[3] Schuth F, Busch O, Hoffmann C, Johann T, Kiener C, Demuth D, Klein J, Schunk S, Strehlau W, Zech T. Top. Catal., 2002, 21: 55.
[4] Seyler M, Stoewe K, Maier W F. Appl. Catal. B, 2007, 76: 146.
[5] Corthals S, Witvrouwen T, Jacobs P, Sels B. Catal. Today, 2011, 159: 12.
[6] Gaudillere C, Vernoux P, Mirodatos C, Caboche G, Farrusseng D. Catal. Today, 2010, 157: 263.
[7] Gobin O C, Joaristi A M, Schueth F. J. Catal., 2007, 252: 205.
[8] Omata K, Ishii H, Horiguchi J, Kobayashi S, Yamazaki Y, Yamada M. J. Comb. Chem., 2009, 11: 169.
[9] Yang Y, Lin T, Weng X L, Darr J A, Wang X Z. Comp. Chem. Eng., 2011, 35: 671.
[10] Stair P C. J. Chem. Phys., 2008, 128: 182507.
[11] Taylor S J, Morken J P. Science, 1998, 280: 267.
[12] Holzwarth A, Schmidt H W, Maier W F. Angew. Chem. Int. Ed., 1998, 37: 2644.
[13] Shioyama H, Yamada Y, Ueda A, Kobayashi T. Carbon, 2003, 41: 607.
[14] Desrosiers P, Guram A, Hagemeyer A, Jandeleit B, Poojary D M, Turner H, Weinberg H. Catal. Today, 2001, 67: 397.
[15] Lucas M, Claus P. Chem. Ing. Tech., 2001, 73: 252.
[16] Claus P, Honicke D, Zech T. Catal. Today, 2001, 67: 319.
[17] Lettmann C, Hinrichs H, Maier W F. Angew. Chem. Int. Ed., 2001, 40: 3160.
[18] Weidenhof B, Reiser M, Stowe K, Maier W F, Kim M, Azurdia J, Gulari E, Seker E, Barks A, Laine R M. J. Am. Chem. Soc., 2009, 131: 9207.
[19] Rajagopalan P, Stowe K, Maier W F. Top. Catal., 2010, 53: 19.
[20] Tang X L, Liu J, Wang B, Yu H W. World J. Microbiol. Biotechnol., 2011, 27: 129.
[21] Sandstrom A G, Wikmark Y, Engstrom K, Nyhlen J, Backvall J E. Proc. Natl. Acad. Sci. U. S. A., 2012, 109: 78.
[22] Macovei C, Vicennati P, Quinton J, Nevers M C, Volland H, Creminon C, Taran F. Chem. Commun., 2012, 48: 4411.
[23] Dai Q X, Xiao H Y, Li W S, Na Y Q, Zhou X P. J. Comb. Chem., 2005, 7: 539.
[24] Dai Q X, Xiao H Y, Li W S, Na Y Q, Zhou X P. Appl. Catal. A, 2005, 290: 25.
[25] Xiao H Y, Dai Q X, Li W S, Au C T, Zhou X P. J. Mol. Catal. A: Chem., 2006, 245: 17.
[26] Grosso D, Boissiere C, Smarsly B, Brezesinski T, Pinna N, Albouy P A, Amenitsch H, Antonietti M, Sanchez C. Nat. Mater., 2004, 3: 787.
[27] Boettcher S W, Fan J, Tsung C K, Shi Q H, Stucky G D. Accounts Chem. Res., 2007, 40: 784.
[28] Fan J, Boettcher S W, Stucky G D. Chem. Mater., 2006, 18: 6391.
[29] Liu J J, Zou S H, Li S, Liao X F, Hong Y J, Xiao L P, Fan J. J. Mater. Chem. A, 2013, 1: 4038.
[30] Ma G C, Yan X Q, Li Y L, Xiao Y L, Huang Z J, Lu Y P, Fan J. J. Am. Chem. Soc., 2010, 132: 9596.
[31] Xu S, Hong Y, Chen C, Li S, Xiao L, Fan J. J. Mater. Chem. A, 2013, 1: 6191.
[32] Reddington E, Sapienza A, Gurau B, Viswanathan R, Sarangapani S, Smotkin E S, Mallouk T E. Science, 1998, 280: 1735.
[33] Liu X N, Shen Y, Yang R T, Zou S H, Ji X L, Shi L, Zhang Y C, Liu D Y, Xiao L P, Zheng X M, Li S, Fan J, Stucky G D. Nano Lett., 2012, 12: 5733.
[34] 范杰(Fan J), 刘小闹(Liu X N). 化学通报(Chemistry), 2013, 76: 675.
[35] Fan J, Guo J F, Liu X N. CN 101549858, 2009.
[36] Gregoire J M, Xiang C, Mitrovic S, Liu X, Marcin M, Cornell E W, Fan J, Jin J. J. Electrochem. Soc., 2013, 160: F337.
[37] Breysse M, Claudel B, Faure L, Guenin M, Williams R J J. J. Catal., 1976, 45: 137.
[38] Utsunomiya K, Nakagawa M, Sanari N, Kohata M, Tomiyama T, Yamamoto I, Wada T, Yamashita N, Yamashita Y. Sens. Actuat. B, 1995, 25: 790.
[39] Nakagawa M, Yamamoto I, Yamashita N. Anal. Sci., 1998, 14: 209.
[40] Okabayashi T, Matsuo N, Yamamoto I, Utsunomiya K, Yamashita N, Nakagawa M. Sens. Actuat. B, 2005, 108: 515.
[41] Garcia-Campana A M, Baeyens W R G, Zhang X R, Smet E, Van der Weken G, Nakashima K, Calokerinos A C. Biomed. Chromatogr., 2000, 14: 166.
[42] Shi J J, Yan R X, Zhu Y F, Zhang X R. Talanta, 2003, 61: 157.
[43] Zhang Z Y, Jiang H J, Xing Z, Zhang X R. Sens. Actuat. B, 2004, 102: 155.
[44] Zhang Z Y, Xu K, Xing Z, Zhang X R. Talanta, 2005, 65: 913.
[45] Zhang Z Y, Xu K, Baeyens W R G, Zhang X R. Anal. Chim. Acta, 2005, 535: 145.
[46] Cao X O, Zhang X R. Luminescence, 2005, 20: 243.
[47] Wu Y Y, Zhang S C, Na N, Wang X, Zhang X R. Sens. Actuat. B, 2007, 126: 461.
[48] Ye Q, Gao Q, Zhang X R, Xu B Q. Chem. J. Chin. Univ. Chin., 2006, 27: 726.
[49] Ye Q, Gao Q, Zhang X R, Xu B Q. Acta Chim. Sin., 2006, 64: 751.
[50] Ye Q, Gao Q, Zhang X R, Xu B Q. Catal. Commun., 2006, 7: 589.
[51] Wang X, Na N, Zhang S C, Wu Y Y, Zhang X R. J. Am. Chem. Soc., 2007, 129: 6062.
[52] Na N, Zhang S C, Wang X, Zhang X R. Anal. Chem., 2009, 81: 2092.
[53] Wu L Y, Zhang Y T, Zhang S C, Zhang X R. Anal. Methods, 2012, 4: 2218.
[54] Sun Z Y, Yuan H Q, Liu Z M, Han B X, Zhang X R. Adv. Mater., 2005, 17: 2993.
[55] Na N, Zhang S C, Wang S, Zhang X R. J. Am. Chem. Soc., 2006, 128: 14420.
[56] Walsh D A, Fernandez J L, Bard A J. J. Electrochem. Soc., 2006, 153: E99.
[57] Minguzzi A, Alpuche-Aviles M A, Lopez J R, Rondinini S, Bard A J. Anal. Chem., 2008, 80: 4055.
[58] Jung C H, Sanchez-Sanchez C M, Lin C L, Rodriguez-Lopez J, Bard A J. Anal. Chem., 2009, 81: 7003.
[59] Lin C L, Rodriguez-Lopez J, Bard A J. Anal. Chem., 2009, 81: 8868.
[60] Ye H C, Lee J W, Jang J S, Bard A J. J. Phys. Chem. C, 2010, 114: 13322.
[61] Liu G J, Bard A J. J. Phys. Chem. C, 2010, 114: 17509.
[62] Liu G J, Liu C Y, Bard A J. J. Phys. Chem. C, 2010, 114: 20997.
[63] Zhang F, Roznyatoyskiy V, Fan F R F, Lynch V, Sessler J L, Bard A J. J. Phys. Chem. C, 2011, 115: 2592.
[64] Ye H C, Park H S, Bard A J. J. Phys. Chem. C, 2011, 115: 12464.
[65] Park H S, Kweon K E, Ye H C, Paek E, Hwang G S, Bard A J. J. Phys. Chem. C, 2011, 115: 17870.
[66] Li W P, Fan F R F, Bard A J. J. Solid State Electrochem., 2012, 16: 2563.
[67] Berglund S P, Lee H C, Nunez P D, Bard A J, Mullins C B. Phys. Chem. Chem. Phys., 2013, 15: 4554.
[68] Bhattacharya C, Lee H C, Bard A J. J. Phys. Chem. C, 2013, 117: 9633.
[69] Fernandez J L, Walsh D A, Bard A J. J. Am. Chem. Soc., 2005, 127: 357.
[70] Lee J W, Ye H C, Pan S L, Bard A J. Anal. Chem., 2008, 80: 7445.
[71] Jang J S, Lee J W, Ye H C, Fan F R F, Bard A J. J. Phys. Chem. C, 2009, 113: 6719.
[72] Liu W, Ye H C, Bard A J. J. Phys. Chem. C, 2010, 114: 1201.
[73] Johann T, Brenner A, Schwickardi M, Busch O, Marlow F, Schunk S, Schuth F. Angew. Chem. Int. Ed., 2002, 41: 2966.
[74] Zhang H, Wang J J, Fan J, Fang Q. Talanta, 2013, 116: 946.

[1] 李高鹏, 张焱*. 必需金属的生物信息学研究现状与展望[J]. 化学进展, 2013, 25(04): 446-456.
[2] 李勇 张晓健 陈超. 水中微量含硫类致嗅物质的色谱分析测试技术*[J]. 化学进展, 2009, 21(12): 2718-2725.
[3] 来婧娟,周建华,郑敏刚,隆泉,郑保忠. 利用离子液体负载反应底物的有机合成[J]. 化学进展, 2008, 20(06): 899-908.
[4] 陈玉岩,刘刚. 动态组合化学最新进展*[J]. 化学进展, 2007, 19(012): 1903-1908.
[5] 黄强,隆泉,郑保忠. 拉曼光谱在固相有机合成中的应用[J]. 化学进展, 2007, 19(01): 165-172.
[6] 李晓静,陈涛,陈洵,李祥高,赵学明. 13C代谢通量分析最新进展[J]. 化学进展, 2006, 18(0708): 995-1001.
[7] 徐秀明,王俊德,李海洋. QCM和SAW传感器的原理及其在现场检测中的应用[J]. 化学进展, 2005, 17(05): 876-880.
[8] 黄强,隆泉,郑保忠. FTIR分析在固相有机合成中的应用*[J]. 化学进展, 2005, 17(05): 889-896.
[9] 陈义. 高通微量分析*[J]. 化学进展, 2005, 17(04): 573-580.
[10] 黄强,隆泉,郑保忠. 固相有机合成中的连接基团*[J]. 化学进展, 2004, 16(02): 236-.
[11] 张城,李伟章,恽榴红. 用组合化学建立天然产物类似物库[J]. 化学进展, 2003, 15(03): 194-.
[12] 陈晓峰,陆祖宏. 寡糖组合合成[J]. 化学进展, 2002, 14(06): 477-.
[13] 孙小琳,洪广言. 组合化学在功能材料合成方面的应用[J]. 化学进展, 2001, 13(05): 398-.
[14] 肖远胜,万伯顺,梁鑫淼. 液相组合化学研究进展[J]. 化学进展, 2001, 13(04): 268-.
[15] 成峰,柳红,罗小民,蒋华良,沈竞康,陈凯先,嵇汝运. 基质金属蛋白酶抑制剂设计的研究进展*[J]. 化学进展, 2001, 13(04): 283-.
阅读次数
全文


摘要

微量组合催化剂筛选技术