English
新闻公告
More
化学进展 2014, Vol. 26 Issue (04): 572-581 DOI: 10.7536/PC130919 前一篇   后一篇

• 综述与评论 •

钠离子电池负极材料

何菡娜, 王海燕*, 唐有根, 刘又年   

  1. 中南大学化学化工学院 有色金属资源化学教育部重点实验室 长沙 410083
  • 收稿日期:2013-09-01 修回日期:2013-11-01 出版日期:2014-04-15 发布日期:2014-01-20
  • 通讯作者: 王海燕,e-mail:wanghy419@126.com E-mail:wanghy419@126.com
  • 基金资助:

    国家自然科学基金项目(No. 21301193)和中国博士后基金(No.2013M530356)资助

Current Studies of Anode Materials for Sodium-Ion Battery

He Hanna, Wang Haiyan*, Tang Yougen, Liu Younian   

  1. Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
  • Received:2013-09-01 Revised:2013-11-01 Online:2014-04-15 Published:2014-01-20
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No.21301193), and the National Science Foundation for Post-doctoral Scientists of China (No.2013M530356)

钠离子电池具有钠资源丰富和成本低廉等特点,吸引了国内外研究者的广泛关注,被认为是今后在规模储能领域可能替代锂离子电池的最佳候选。近几年钠离子电池的研究相继取得了重要进展,研究体系不断丰富。本文对钠离子电池负极材料的研究现状进行了详细的综述,重点介绍了碳基材料、合金材料、非金属单质、金属氧化物以及有机化合物等嵌钠性能及可能的嵌钠机理。探讨了这些材料目前所面临的主要问题及可能的解决策略,并对钠离子电池今后的研究方向和应用前景进行了展望。

Room-temperature rechargeable Na ions batteries have attracted enormous interest due to its low cost and the environmental abundance of the sodium, which are considered as the best candidate for replacing the Li ion batteries in the large-scale electric energy storage. In recent years, the studies of Na ion batteries have made significant progress and the related components have been enriched. The current researches of anode materials for sodium ion batteries are reviewed in details, with emphasis on the electrochemical properties and charge-discharge mechanisms of carbon-based materials, alloys, non-metal substances, metal oxides and organic compounds. The main problems of these kinds of anode materials are discussed and the probable strategies are proposed. Then, the application prospective and the research directions of Na ions batteries in the future are also forecasted.

Contents
1 Introduction
2 Carbon-based materials
2.1 Graphite
2.2 Ungraphitised carbon
3 Metal or alloy materials 4 Metal oxides
5 Non-metal substance
6 Titanate
7 Organic materials
8 Conclusions and outlook

中图分类号: 

()

[1] Tarascon J M, Armand M. Nature, 2001, 414: 359.
[2] Lu X, Xia G, Lemmon J P, Yang Z. J. Power Sources, 2010, 195: 2431.
[3] Wu X L, Jiang L Y, Cao F F, Guo Y G, Wan L J. Adv. Mater., 2009, 21: 2710.
[4] Jung H G, Jang M W, Hassoun J, Sun Y K, Scrosati B. Nat. Commun., 2011, 2: 516.
[5] Wadia C, Albertus P, Srinivasan V. J. Power Sources, 2011, 196: 1593.
[6] Ceder G, Hautier G, Jain A, Ong S P. MRS Bulletin, 2011, 36: 185.
[7] Ellis B L, Makahnouk W R M, Makimura Y, Toghill K, Nazar L F. Nat. Mater., 2007, 6: 749.
[8] Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S, Okuyama R, Usui R, Yamada Y, Komaba S, Nat. Mater., 2012, 11: 512.
[9] Berthelot R, Carlier D, Delmas C. Nat. Mater., 2011, 10: 74.
[10] Kim H, Kim D J, Seo D H, Yeom M S, Kang K, Kim D K, Jung Y. Chem. Mater., 2012, 24: 1205.
[11] D'Arienzo M, Ruffo R, Scotti R, Morazzoni F, Maria C M, Polizzi S. Phys. Chem. Chem. Phys., 2012, 14: 5945.
[12] Velikokhatnyi O I, Choi D, Kumta P N. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 2006, 128: 115.
[13] Zhao L, Ni J, Wang H, Gao L. RSC Advances, 2013, 3: 6650.
[14] Burba C M, Frech R. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2006, 65: 44.
[15] Gover R K B, Bryan A, Burns P, Barker J. Solid State Ionics, 2006, 177: 1495.
[16] Trad K, Carlier D, Croguennec L, Wattiaux A, Ben Amara M, Delmas C. Chem. Mater., 2010, 22: 5554.
[17] Liu Y, Xu Y, Han X, Pellegrinelli C, Zhu Y, Zhu Y, Wan J, Chung A C, Vaaland O, Wang C, Hu L. Nano Lett., 2012, 12: 5664.
[18] Langrock A, Xu Y, Liu Y, Ehrman S, Manivannan A, Wang C. J. Power Sources, 2013, 223: 62.
[19] Sun Q, Ren Q Q, Fu Z W. Electrochem. Commun., 2012, 23: 145.
[20] Gopalakrishnan J, Rangan K K. Chem. Mater., 1992, 4: 745.
[21] Plashnitsa L S, Kobayashi E, Noguchi Y, Okada S, Yamaki J I. J. Electrochem. Soc., 2010, 157: A536-A543.
[22] Palomares V, Serras P, Villaluenga I, Hueso K B, Carretero-Gonzalez J, Rojo T. Energy Environ. Sci., 2012, 5: 5884.
[23] 吴振军(Wu Z J), 陈宗璋(Chen Z Z), 汤宏伟(Tang H H), 李素芳(Li S F). 电池(Battery Bimonthly), 2002, 32: 45.
[24] Zou L, Kang F, Zheng Y P, Shen W. Electrochim. Acta, 2009, 54: 3930.
[25] Asher R C. J. Inorg. Nucl. Chem., 1959, 10: 238.
[26] Ge P, Fouletier M. Solid State Ionics, 1988, 28/30: 1172.
[27] Alcántara R, Fernández Madrigal F J, Lavela P, Tirado J L, Jiménez Mateos J M, de Salazar C G, Stoyanova R, Zhecheva E. Carbon, 2000, 38: 1031.
[28] Alcántara R, Jiménez-Mateos J M, Lavela P, Tirado J L. Electrochem. Commun., 2001, 3: 639.
[29] Stevens D A, Dahn J R. J. Electrochem. Soc., 2000, 147: 1271.
[30] Stevens D A, Dahn J R. J. Electrochem. Soc., 2000, 147: 4428.
[31] Komaba S, Murata W, Ishikawa T, Yabuuchi N, Ozeki T, Nakayama T, Ogata A, Gotoh K, Fujiwara K. Adv. Funct. Mater., 2011, 21: 3859.
[32] Alcantara R, Jimenez-Mateos J M, Lavela P, Tirado J L. Electrochem. Commun., 2001, 3: 639.
[33] Alcantara R, Lavela P, Ortiz G F, Tirado J L. Electrochem. Solid-State Lett., 2005, 8: A222.
[34] Wenzel S, Hara T, Janek J, Adelhelm P. Energy Environ. Sci., 2011, 4: 3342.
[35] Cao Y, Xiao L, Sushko M L, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf L V, Yang Z, Liu J. Nano Lett., 2012, 12: 3783.
[36] Yoo E, Kim J, Hosono E, Zhou H S, Kudo T, Honma I. Nano Lett., 2008, 8: 2277.
[37] Lian P, Zhu X, Liang S, Li Z, Yang W, Wang H. Electrochim. Acta, 2010, 55: 3909.
[38] Wang H, Zhang C, Liu Z, Wang L, Han P, Xu H, Zhang K, Dong S, Yao J, Cui G. J. Mater. Chem., 2011, 21: 5430.
[39] Li X, Geng D, Zhang Y, Meng X, Li R, Sun X. Electrochem. Commun., 2011, 13: 822.
[40] Reddy A L M, Srivastava A, Gowda S R, Gullapalli H, Dubey M, Ajayan P M. ACS Nano, 2010, 4: 6337.
[41] Panchakarla L S, Subrahmanyam K S, Saha S K, Govindaraj A, Krishnamurthy H R, Waghmare U. Adv. Mater., 2009, 21: 4726.
[42] Wang H G, Wu Z, Meng F L, Ma D L, Huang X L, Wang L M, Zhang X B. ChemSusChem, 2013, 6: 56.
[43] Wang Y X, Chou S L, Liu H K, Dou S X. Carbon, 2013, 57: 202.
[44] Winter M, Besenhard J O. Electrochim. Acta, 1999, 45: 31.
[45] Besenhard J O, Komenda P, Paxinos A, Wudy E, Josowicz M. Solid State Ionics, 1986, 18/19: 823.
[46] Chevrier V L, Ceder G. J. Electrochem. Soc., 2011, 158: A1011.
[47] Tran T T, Obrovac M N. J. Electrochem. Soc., 2011, 158: A1411.
[48] Komaba S, Matsuura Y, Ishikawa T, Yabuuchi N, Murata W, Kuze S. Electrochem. Commun., 2012, 21: 65.
[49] Matsuura Y, Ishikawa T, Murata W, Yabuuchi N, Kuze S, Komaba S. The Electrochemical Society, Honolulu PRiME 2012. 1849.
[50] Hong K, Nam D, Lim S, Kwon H. 224th ECS Meeting, San Francisco, 2013. 479.
[51] Mortazavi M, Deng J, Shenoy V B, Medhekar N V. J. Power Sources, 2013, 225: 207.
[52] Datta M K, Epur R, Saha P, Kadakia K, Park S K, Kuma P N. J. Power Sources, 2013, 225: 316.
[53] Xu Y, Zhu Y, Liu Y, Wang C. Adv. Energy Mater., 2013, 3: 128.
[54] Qian J, Chen Y, Wu L, Cao Y, Ai X, Yang H. Chem. Commun., 2012, 48: 7070.
[55] Zhu Y, Han X, Xu Y, Liu Y, Zheng S, Xu K, Hu L, Wang C. ACS Nano, 2013, 7: 6378.
[56] Xiao L, Cao Y, Xiao J, Wang W, Kovarik L, Nie Z, Liu J. Chem. Commun., 2012, 48: 3321.
[57] Wu L, Hu X, Qian J, Pei F, Wu F, Mao R, Ai X, Yang H, Cao Y. J. Mater. Chem. A, 2013, 1: 7181.
[58] Kim I T, Allcorn E, Manthiram A. Energy Technol., 2013, 1: 319.
[59] Koo B, Chattopadhyay S, Shibata T, Prakapenka V B, Johnson C S, Rajh T, Sheychenko E V. Chem. Mater., 2013, 25: 245.
[60] Tepavcevic S, Xiong H, Stamenkovic V R, Zuo X, Balasubramanian M, Prakapenka V B, Johnson C S, Rajh T. ACS Nano, 2012, 6: 530.
[61] Chen Z, Augustyn V, Jia X L, Xiao Q F, Dunn B, Lu Y F. ACS Nano, 2012, 6: 4319.
[62] Armstrong A R, Armstrong G, Canales J, García R, Bruce P G. Adv. Mater., 2005, 17: 862.
[63] Wang D, Choi D, Li J, Yang Z, Nie Z, Kou R, Hu D, Wang C, Saraf L V, Zhang J, Aksay I A, Liu J. ACS Nano, 2009, 3: 907.
[64] Tao T, Chen Y. Mater. Lett., 2013, 98: 112.
[65] Xiong H, Slater M D, Balasubramanian M, Johnson C S, Rajh T. J. Phys. Chem. Lett., 2011, 2: 2560.
[66] Hariharan S, Saravanan K, Balaya P. Electrochem. Commun., 2013, 31: 5.
[67] Winter M, Besenhard J, Spahr M. Adv. Mater., 1998, 10: 725.
[68] Su D, Wang C, Ahn H, Wang G. Phys. Chem. Chem. Phys, 2013, 15: 12543.
[69] Wang Y, Su D, Wang C, Wang G. Electrochem. Commun., 2013, 29: 8.
[70] Su D, Ahn H J, Wang G. Chem. Commun., 2013, 49: 3131.
[71] Park C M, Sohn H J. Adv. Mater., 2007, 19: 2465.
[72] Sun L Q, Li M J, Sun K, Yu S H, Wang R S, Xie H M. J. Phys. Chem. C, 2012, 116: 14772.
[73] Qian J, Qiao D, Ai X, Cao Y, Yang H. Chem. Commun., 2012, 48: 8931.
[74] 钱江锋(Qian J F). 武汉大学博士学位论文(Doctoral Dissertation of Wuhan University), 2012.
[75] Qian J, Wu X, Cao Y, Ai X, Yang H. Angew. Chem. Int. Ed., 2013, 52: 4633.
[76] Kim Y, Park Y, Choi A, Choi N S, Kim J, Lee J, Ryu J H, Oh S M, Lee K T. Adv. Mater., 2013, 25: 3045.
[77] Senguttuvan P, Rousse G, Vezin H, Tarascon J M, Palacin M R. Chem. Mater., 2013, 25: 2391.
[78] Rudola A, Saravanan K, Mason C W, Balaya P. J. Mater. Chem. A, 2013, 1: 2653.
[79] Wang W, Yu C, Liu Y, Hou J, Zhu H, Jiao S. RSC Adv., 2013, 3: 1041.
[80] Wang W, Yu C, Lin Z, Hou J, Zhu H, Jiao S. Nanoscale, 2013, 5: 594.
[81] Nakayama H, Nose M, Nobuhara K, Nakanishi S, Iba H. The Electrochemical Society, Honolulu PRiME 2012. 1855.
[82] Park S Ⅱ, Gocheva I, Okada S, Yamaki J I. J. Electrochem. Soc., 2011, 158: A1067.
[83] Woo S H, Park Y, Choi W Y, Choi N S, Nam S, Park B, Lee K T. J. Electrochem. Soc., 2012, 159: A2016.
[84] Zhao L, Pan H L, Hu Y S, Li H, Chen L Q. Chin. Phys. B, 2012, 21: 028201.
[85] Sun Y, Zhao L, Pan H L, Lu X, Gu L, Hu Y S, Li H, Armand M, Ikuhara Y, Chen L Q, Huang X J. Nat. Commun., 2013, 4: 1870.
[86] Park Y, Shin D S, Woo S H, Choi N S, Shin K H, Oh S M, Lee K T, Hong S Y. Adv. Mater., 2012, 24: 3562.
[87] Zhao L, Zhao J, Hu Y S, Li H, Zhou Z, Armand M, Chen L. Adv. Energy Mater., 2012, 2: 962.
[88] Zhu L, Niu Y, Cao Y, Lei A, Ai X, Yang H. Electrochim. Acta, 2012, 78: 27.

[1] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[2] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[3] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[4] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[5] 李婧婧, 李洪基, 黄强, 陈哲. 掺杂对钠离子电池正极材料性能影响机制的研究[J]. 化学进展, 2022, 34(4): 857-869.
[6] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[7] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[8] 卢赟, 史宏娟, 苏岳锋, 赵双义, 陈来, 吴锋. 元素掺杂碳基材料在锂硫电池中的应用[J]. 化学进展, 2021, 33(9): 1598-1613.
[9] 蔡克迪, 严爽, 徐天野, 郎笑石, 王振华. 锂离子电容电池关键电极材料[J]. 化学进展, 2021, 33(8): 1404-1413.
[10] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[11] 金士成, 闫爽. 金属氧化物室温气敏材料的结构调控及传感机理[J]. 化学进展, 2021, 33(12): 2348-2361.
[12] 徐梦婷, 王彦青, 毛亚, 李景娟, 江志东, 原鲜霞. 非水系锂空气电池催化剂[J]. 化学进展, 2021, 33(10): 1679-1692.
[13] 谷麟, 章凯, 俞海祥, 董光霞, 乔兴博, 闻海峰. 污泥碳基催化材料的合成及在水环境中的应用[J]. 化学进展, 2020, 32(9): 1412-1426.
[14] 张志, 邹晨涛, 杨水金. 基于钨(钼)酸铋半导体复合材料的合成及其在光催化降解中的应用[J]. 化学进展, 2020, 32(9): 1427-1436.
[15] 刘建文, 姜贺阳, 孙驰航, 骆文彬, 毛景, 代克化. P2结构层状复合金属氧化物钠离子电池正极材料[J]. 化学进展, 2020, 32(6): 803-816.
阅读次数
全文


摘要

钠离子电池负极材料