English
新闻公告
More
化学进展 2014, Vol. 26 Issue (04): 582-591 DOI: 10.7536/PC130914 前一篇   后一篇

• 综述与评论 •

钠离子储能电池关键材料

金翼1, 孙信2, 余彦2, 丁楚雄2, 陈春华*2, 官亦标1   

  1. 1. 中国电力科学研究院电工与新材料研究所 北京 100192;
    2. 中国科学技术大学材料科学与工程系 合肥 230026
  • 收稿日期:2013-09-01 修回日期:2013-12-01 出版日期:2014-04-15 发布日期:2014-01-20
  • 通讯作者: 陈春华,e-mail:cchchen@ustc.edu.cn E-mail:cchchen@ustc.edu.cn
  • 基金资助:

    国家电网公司科技项目(DG71-13-003)资助

Research Progress in Sodium-Ion Battery Materials for Energy Storage

Jin Yi1, Sun Xin2, Yu Yan2, Ding Chuxiong2, Chen Chunhua*2, Guan Yibiao1   

  1. 1. Department of Electrical Engineering and New Materials, China Electric Power Research Institute, Beijing 100192;
    2. Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
  • Received:2013-09-01 Revised:2013-12-01 Online:2014-04-15 Published:2014-01-20
  • Supported by:

    The work was supported by SGCC Science and Technology Programs (DG71-13-003)

钠离子电池是一种新型电化学电源,具有原材料资源丰富、成本较低、比容量和效率较高等优点,较为符合规模化储能应用要求,在提升大规模可再生能源并网接入能力、提高电能使用效率和电能质量方面具有应用潜力。在这一背景下,钠离子电池近年来引起全世界范围内的广泛关注,关键材料和相关技术研究进展迅速。本文从钠离子电池的负极材料和正极材料两方面对近年来的主要研究工作进行综述,同时简略介绍了与之匹配的电解质体系的研究进展,讨论了当前面临的主要技术关键点和难点,并尝试对我国科研和产业工作者在该领域的研究工作提出一些建议。

As a novel electrochemical power resource, sodium-ion battery (NIB) is advantageous in abundant resources for electrode materials, significantly low cost, relatively high specific capacity and efficiency. Therefore, NIB is regarded as a competitive candidate for large-scale energy storage usage and has potential for improving renewable energy resources grid-connected ability and power energy quality. Under this background, NIB is attracting extensive attentions worldwide and developing fast. In this review, we focus on the latest progress in the anode, cathode materials and electrolytes for NIB. After discussing the key technologies on materials of NIB, we attempt to give some suggestions on future research directions of NIB for relevant researchers and manufacturers in China.

Contents
1 Introduction
2 Anode materials for sodium-ion batteries
2.1 Carbon materials
2.2 Alloy materials
2.3 Metal oxide materials
3 Cathode materials for sodium-ion batteries
3.1 Metal oxide materials
3.2 Poly-anion materials
3.3 Fluoride materials
4 Electrolyte materials
5 Aqueous Na-ion batteries
6 Conclusions

中图分类号: 

()

[1] 曹兆汉(Cao Z H). 盐湖研究(Salt Lake Research), 1989, 1: 32.
[2] Ozawa K. Solid State Ionics, 1994, 69: 212.
[3] Stevens D A, Dahn J R. J. Electrochem. Soc., 2001, 148: A803.
[4] Divincenzo D P, Mele E J. Phys. Rev. B, 1985, 32: 2538.
[5] Jiang W J, Dahn J R. Electrochim. Acta, 2004, 49: 4599.
[6] Sangster J. J. Phase Equilib. Diff., 2007, 28: 571.
[7] Ge P, Fouletier M. Solid State Ionics, 1988, 28: 1172.
[8] Doeff M M, Ma Y, Visco S J, De Jonghe L C. J. Electrochem. Soc., 1993, 140: L169.
[9] Alcantara R, Mateos J M J, Tirado J L. J. Electrochem. Soc., 2002, 149: A201.
[10] Zhecheva E, Stoyanova R, Jiménez-Mateos J M. Alcántara R, Lavela P, Tirado J L, Carbon, 2002, 40: 2301.
[11] Alcántara R, Jiménez-Mateos J M, Lavela P, Tirado J L. Electrochem. Commun., 2001, 3: 639.
[12] Thomas P, Ghanbaja J, Billaud D. Electrochim. Acta, 1999, 45: 423.
[13] Dubois M, Billaud D. Electrochim. Acta, 2002, 47: 4459.
[14] Dubois M, Naji A, Billaud D. Electrochim. Acta, 2001, 46: 4301.
[15] Stevens D A, Dahn J R. J. Electrochem. Soc., 2000, 147: 4428.
[16] Komaba S, Murata W, Ishikawa T, Yabuuchi N, Ozeki T, Nakayama T, Ogata A, Gotoh K, Fujiwara K. Adv. Funct. Mater., 2011, 21: 3859.
[17] Alcantara R, Lavela P, Ortiz G F, Tirado J L. Electrochem. Solid-State Lett., 2005, 8: A222.
[18] Matsushita T, Ishii Y, Kawasaki S. Mater. Express, 2013, 3(1): 30.
[19] Yang S, Liu H K, Dou S X. Carbon, 2013, 57: 202.
[20] Chevrier V L, Ceder G. J. Electrochem. Soc., 2011, 158: A1011.
[21] Xiao L, Cao Y, Xiao J, Wang W, Kovarik L, Nie Z, Liu J, Chem. Commun., 2012, 48: 3321.
[22] Qian J, Chen Y, Wu L, Cao Y, Ai X, Yang H. Chem. Commun., 2012, 48: 7070.
[23] Alcántara R, Jaraba M, Lavela P, Tirado J L. Chem. Mater., 2002, 14: 2847.
[24] Zhao L, Pan H L, Hu Y S, Li H, Chen L Q. Chin. Phys. B, 2012, 21:028201.
[25] Senguttuvan P, Rousse G l, Seznec V, Tarascon J M, Palacín M R. Chem. Mater., 2011, 23: 4109.
[26] Xiong H M, Slater D, Balasubramanian M, Johnson C S, Rajh T. J. Phys. Chem. Lett., 2011, 2: 2560.
[27] Wang W, Yu C, Lin Z, Hou J, Zhu H, Jiao S. Nanoscale, 2013, 5 (2): 594.
[28] Rudola A, Saravanan K, Mason C W, Balaya P. J. Mater. Chem. A, 2013, 1 (7): 2653.
[29] Senguttuvan P, Rousse G, Seznec V, Tarascon, J M, Palacín M R. Chem. Mater., 2011, 23 (18): 4109.
[30] Wang Y S, Yu X Q, Xu S, Bai J M, Xiao R J, Hu Y S, Li H, Yang X Q, Chen L Q, Huang X J. Nature Commun., 2013, 4: 2365.
[31] Sun Q, Ren Q Q, Li H, Fu Z W. Electrochem. Commun., 2011, 13: 1462.
[32] Zhang W M, Wu X L, Hu J S, Guo Y G, Wan L J. Adv. Funct. Mater., 2008, 18: 3941.
[33] Ma X H, Feng X Y, Song C, Zou B K, Ding C X, Yu Y, Chen C H. Electrochim. Acta, 2013, 93: 131.
[34] Wang S, Zhang J, Chen C. J. Power Sources, 2010, 195: 5379.
[35] Muraliganth T, Vadivel M A, Manthiram A. Chem. Commun., 2009, 7360.
[36] Liu H, Wang G, Wang J, Wexler D. Electrochem. Commun., 2008, 10: 1879.
[37] Cui Z M, Jiang L Y, Song W G, Guo Y G. Chem. Mater., 2009, 21: 1162.
[38] Ren S, Prakash R, Wang D, Chakravadhanula V S K, Fichtner M. Chem. Sus. Chem., 2012, 5: 1397.
[39] PiaoY, Kim H S, Sung Y E, Hyeon T. Chem. Commun., 2010, 46: 118.
[40] Kang E, Jung Y S, Cavanagh A S, Kim GH, George S M, Dillon A C, Kim J K, Lee J. Adv. Funct. Mater., 2011, 21: 2430.
[41] Xiong Q Q, Tu J P, Lu Y, Chen J, Yu Y X, Qiao Y Q, Wang X L, Gu C D. J. Phys. Chem. C, 2012, 116: 6495.
[42] Hariharan S, Saravanan K, Ramar V, Balaya P. Phys. Chem. Chem. Phys., 2013, 15: 2945.
[43] Didier C, Guignard M, Denage C, Szajwaj O, Ito S, Saadoune I, Darriet J, Delmas C. Electrochem. Solid-State Lett., 2011, 14: A75.
[44] Delmas C, Braconnier J J, Fouassier C, Hagenmuller P. SolidState Ionics, 1981, 3/4: 165.
[45] Braconnier J J, Delmas C, Hagenmuller P. Mater. Res. Bull., 1982, 17: 993.
[46] Sauvage F, Laffont L, Tarascon J M, Baudrin E. Inorg. Chem., 2007, 46: 3289.
[47] Komaba S, Nakayama T, Ogata A, Shimizu T, Takei C, Takada S, Hokura A, Nakai I. ECS Trans., 2009, 16: 43.
[48] Komaba S, Takei C, Nakayama T, Ogata A, Yabuuchi N. Electrochem. Commun., 2010, 12: 355.
[49] Ding J J, Zhou Y N, Sun Q, Fu Z W. Electrochem. Commun., 2012, 22: 85.
[50] MakimuraY, Ohzuku T. J. Power Sources, 2003, 156: 119.
[51] Yabuuchi N, Lu Y C, Mansour A N, Chen S, Yang S H. J. Electrochem. Soc., 2011, 158: A192.
[52] Komaba S, Nakayama T, Ogata A, Shimizu T, Takei C, Takada S, Nakai I. ECS Transactions, 2009, 16(42): 43.
[53] Kim D, Kang S H, Slater M, Rood S, Vaughey J T, Karan N, Balasubramanian M, Johnson C S. Adv. Energy Mater., 2011, 1: 333.
[54] Kim D, Lee E, Slater M, Lu W, Rood S, Johnson C S, Electrochem. Commun., 2012, 18: 66.
[55] Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S, Okuyama R, Usui R, Yamada Y, Komaba S. Nature Mater., 2012,11: 512.
[56] Cao Y, Xiao L, Wang W, Choi D, Nie Z, Yu J, Saraf L V, Yang Z, Liu J. Adv. Mater., 2011, 23: 3155.
[57] Delacourt C, Laffont L, Bouchet R, Wurm C, Leriche J B, Morcrette M, Tarascon J M, Masquelier C. J. Electrochem. Soc., 2005, 152: A913.
[58] Okada S, Sawa S, Egashira M, Yamaki J, Tabuchi M, Kageyama H, Konishi T, Yoshino A. J. Power Sources, 2001, 97/98: 430.
[59] Padhi A K, Nanjundaswamy K S, Masquelier C, Okada S, Goodenough J B. J. Electrochem. Soc., 1997, 144: 1609.
[60] Teng F, Hu Z, Ma X H, Zhang L C, Ding C X, Yu Y, Chen C H. Electrochim. Acta, 2013, 91: 43.
[61] BarkerJ, Saidi M Y, SwoyerJ L. Electrochem. Solid-State Lett., 2003, 6: A1.
[62] Sun Q, Ren Q Q, Fu Z W. Electrochem. Commun. , 2012, 23: 145.
[63] Jian Z, Zhao L, Pan H, Hu Y S, Li H, Chen W, Chen L Q. Electrochem. Commun., 2012, 14: 86.
[64] Moreau P, Guyomard D, Gaubicher J, Boucher F. Chem. Mater., 2010, 22: 4126.
[65] Ellis B L, Makahnouk W R M, Makimura Y, Toghill K, Nazar L F. Nature Mater., 2007, 6(10): 749.
[66] Yamada Y, Doi T, Tanaka I, Okada S, Yamaki J I. J. Power Sources, 2011, 198: 389.
[67] Wen J W, Yu Y, Chen C H. Mater. Express, 2012, 2: 197.
[68] Zhang S S. J. Power Sources, 2002, 162: 1379.
[69] Tarascon J M, Armand M. Nature, 2001, 414: 359.
[70] Yang P, Tarascon J M. Nature Mater., 2012, 11: 560.
[71] Xia X, DahnJ R. J. Electrochem. Soc., 2012, 10: 1149.
[72] Ponrouch A, Marchante E, Courty M, Tarascon J M, Palacin M R. Energy Environ. Sci., 2012, 5: 8572.
[73] Ding J J, Zhou Y N, Sun Q, Yu X Q, Yang X Q, Fu Z W. Electrochim. Acta, 2013, 87: 388.
[74] Bohnke O, Ronchetti S, Mazza D. Solid State Ionics, 1999, 122: 127.
[75] Li Z, Young D, Xiang K, Carter W C, Chiang Y M. Adv. Energy Mater., 2013, 3: 290.
[76] Wessells C D, Peddada S V, Huggins R A, Cui Y. Nano Lett., 2011, 11: 5421.
[77] Wessells C D, Peddada S V, McDowell M T, Huggins R A, Cui Y. J. Electrochem. Soc., 2011, 159: A98.
[78] Wessells C D, McDowell M T, Peddada S V, Pasta M, Huggins R A, Cui Y. ACS Nano, 2012, 6: 1688.
[79] Kim S W, Seo D H, Ma X, Ceder G, Kang K. Adv. Energy Mater., 2012, 2: 710.

[1] 赵秉国, 刘亚迪, 胡浩然, 张扬军, 曾泽智. 制备固体氧化物燃料电池中电解质薄膜的电泳沉积法[J]. 化学进展, 2023, 35(5): 794-806.
[2] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[3] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[4] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[5] 李婧婧, 李洪基, 黄强, 陈哲. 掺杂对钠离子电池正极材料性能影响机制的研究[J]. 化学进展, 2022, 34(4): 857-869.
[6] 管可可, 雷文, 童钊明, 刘海鹏, 张海军. MXenes的制备、结构调控及电化学储能应用[J]. 化学进展, 2022, 34(3): 665-682.
[7] 王雨萌, 杨蓉, 邓七九, 樊潮江, 张素珍, 燕映霖. 双金属MOFs及其衍生物在电化学储能领域中的应用[J]. 化学进展, 2022, 34(2): 460-473.
[8] 高耕, 张克宇, 王倩雯, 张利波, 崔丁方, 姚耀春. 金属草酸盐基负极材料——离子电池储能材料的新选择[J]. 化学进展, 2022, 34(2): 434-446.
[9] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[10] 黄祺, 邢震宇. 锂硒电池研究进展[J]. 化学进展, 2022, 34(11): 2517-2539.
[11] 陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 聚合物固态锂电池电解质/负极界面[J]. 化学进展, 2021, 33(8): 1378-1389.
[12] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[13] 李文涛, 钟海, 麦耀华. 锂二次电池中的原位聚合电解质[J]. 化学进展, 2021, 33(6): 988-997.
[14] 刘小琳, 杨西亚, 王海龙, 王康, 姜建壮. 用于可充电器件的有机电极材料[J]. 化学进展, 2021, 33(5): 818-837.
[15] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
阅读次数
全文


摘要

钠离子储能电池关键材料