English
新闻公告
More
化学进展 DOI: 10.7536/PC130857 前一篇   后一篇

• 综述与评论 •

Cu-ZSM-5分子筛催化分解及选择性催化还原NO

陈艳平1, 程党国1, 陈丰秋*1,2, 詹晓力1   

  1. 1. 浙江大学化学工程与生物工程学系 杭州 310027;
    2. 生物质化工教育部重点实验室 杭州 310027
  • 收稿日期:2013-08-01 修回日期:2013-10-01 出版日期:2014-02-15 发布日期:2013-12-18
  • 通讯作者: 陈丰秋,e-mail:fqchen@zju.edu.cn E-mail:fqchen@zju.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.20806070)资助

NO Decomposition and Selective Catalytic Reduction of NO over Cu-ZSM-5 Zeolite

Chen Yanping1, Cheng Dang-guo1, Chen Fengqiu*1,2, Zhan Xiaoli1   

  1. 1. Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China;
    2. Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Hangzhou 310027, China
  • Received:2013-08-01 Revised:2013-10-01 Online:2014-02-15 Published:2013-12-18
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (No.20806070)

Cu-ZSM-5分子筛因具有高的催化脱除NO活性和对环境友好等优点而引起广泛关注。本文从NO分解反应、以NH3为还原剂选择性催化还原NO(NH3-SCR-NO)和以碳氢化合物为还原剂选择性催化还原NO(CH-SCR-NO)三个方面综述了Cu-ZSM-5分子筛催化脱除NO反应机理和催化剂改进方面的研究进展,并对该领域存在的问题和发展前景做了总结和展望。Cu-ZSM-5分子筛催化分解NO被认为是最具有吸引力的脱硝方法,其通过Cu+的氧化还原过程和N2O的生成来实现;Cu-ZSM-5分子筛上NH3-SCR-NO 反应具有较高的NO脱除效率,NO首先被氧化为NO2,NO2再与NH3结合为NH4NO3,NH4NO3再进一步与NO反应生成N2;CH-SCR-NO反应是利用贫燃发动机尾气中未完全燃烧的碳氢化合物为还原剂,一般认为碳氢化合物与氮氧化物生成硝基烷或亚硝基烷,再经异氰酸酯或氰化物生成终产物N2。Cu-ZSM-5分子筛存在水热稳定性差和易发生二氧化硫中毒等缺点,通过引入第二金属组分和制备整体式催化剂方法可显著改善Cu-ZSM-5分子筛的催化性能。系统了解NO脱除反应机理和活性位的作用机制可为催化剂的改进奠定理论基础,同时也有助于设计合成新型高效、环境友好的脱硝催化剂体系。

More attention to Cu-ZSM-5 zeolite has been paid due to its excellent catalytic activities in removal of NO, and the process it concerned is non-polluting. In this review, the reaction mechanism and catalyst improvement of NO decomposition, selective catalytic reduction of NO with ammonia (NH3-SCR-NO) and with hydrocarbons (CH-SCR-NO) over Cu-ZSM-5 zeolite are summarized. The possible developing orientations in the field of removal of NO over Cu-ZSM-5 zeolite are also prospected. Direct catalytic decomposition of NO to N2 and O2 has been recognized as the most attractive method for removal of NO, which involves redox process of Cu+ and formation of N2O. NH3-SCR-NO reaction is one of the most efficient and widely-used techniques. Firstly, NO is oxidized to NO2, and then NH4NO3 is formed from the reaction of NO2 and NH3. Finally, NH4NO3 reacts with NO generating N2. CH-SCR-NO reaction over Cu-ZSM-5 zeolite is an efficient way for the treatment of automobile-exhaust pollution. The formation of key intermediates such as isocyanate and cyanide species is a necessary process during CH-SCR-NO reaction. However, Cu-ZSM-5 zeolite suffers from poor hydrothermal stability and high sulfur dioxide (SO2) poisoning property which have suppressed its industrial applications. Introduction of a second metal and fabrication of monolithic catalyst can significantly improve the catalytic performance of Cu-ZSM-5 zeolite. The systematic understanding of reaction mechanism is beneficial to the improvement of Cu-ZSM-5 zeolite and also important for the design of novel,efficient,environmentally-friendly catalysts.

Contents
1 Introduction
2 NO decomposition over Cu-ZSM-5 zeolite
2.1 Reaction mechanism of NO decomposition
2.2 Improvement of Cu-ZSM-5 zeolite for NO decomposition
3 NH3-SCR-NO reaction over Cu-ZSM-5 zeolite
3.1 Reaction mechanism of NH3-SCR-NO reaction
3.2 Improvement of Cu-ZSM-5 zeolite for NH3-SCR-NO reaction
4 CH-SCR-NO reaction over Cu-ZSM-5 zeolite
4.1 Reaction mechanism of CH-SCR-NO reaction
4.2 Choice of reductants of hydrocarbon
4.3 Improvement of Cu-ZSM-5 zeolite for CH-SCR-NO reaction
5 Conclusion and prospects

中图分类号: 

()

[1] Aylor A W, Larsen S C, Reimer J A, Bell A T. J. Catal., 1995, 157: 592.
[2] Cheng D G, Chen F Q, Zhan X L. Appl. Catal. A, 2012, 435/436: 27.
[3] 赵晓旭(Zhao X X), 程党国(Cheng D G), 陈丰秋(Chen F Q), 詹晓力(Zhan X L). 催化学报(Chinese Journal of Catalysis), 2010, 31(1): 68.
[4] Li L, Guan N. Micropor. Mesopor. Mat., 2009, 117: 450.
[5] 陈艳平(Chen Y P), 程党国(Cheng D G), 陈丰秋(Chen F Q), 詹晓力(Zhan X L). 化学进展(Progress in Chemistry), 2013, 25(12): 2011.
[6] Ingelsten H H, Palmqvist A, Skoglundh M. J. Phys. Chem. B, 2006, 110: 18392.
[7] Hall W K, Valyon J. J. Catal., 1992, 15: 311.
[8] Glick H S, Klein J J, Squire W. J. Chem. Phys., 1957, 27: 850.
[9] Iwamoto M, Furukawa H, Mine Y, Uemura F, Mikuriya S, Kagawa S. J. Chem. Soc., Chem. Commun., 1986, 1272.
[10] Shelef M. Catal. Lett., 1992, 15: 305.
[11] Valyon J, Hall W K. J. Phys. Chem., 1993, 97: 1204.
[12] Wichterlova B, Dedecek J, Vondrová A, Klier K. J. Catal., 1997, 169: 194.
[13] Groothaert M H, Lievens K, Leeman H, Weckhuysen B M, Schoonheydt R A. J. Catal., 2003, 220: 500.
[14] Děde?ek J, Wichterlová B. J. Phys. Chem. B, 1997, 101: 10233.
[15] Schay Z, Knözinger H, Guczi L, Pal-Borbely G. Appl. Catal. B, 1998, 18: 263.
[16] Park S K, Kurshev V, Luan Z, Lee C W, Kevan L. Micropor. Mesopor. Mat., 2000, 38: 255.
[17] Morpurgo S, Moretti G, Bossa M. J. Mol. Catal. A: Chem., 2012, 358: 134.
[18] Morpurgo S, Moretti G, Bossa M. Theor. Chem. Acc., 2012, 131: 1.
[19] Izquierdo R, Rodríguez L J, A ?瘙 塀 ez R, Sierraalta A. J. Mol. Catal. A: Chem., 2011, 348: 55.
[20] Zakharov I I, Ismagilov Z R, Ruzankin S P, Anufrienko V F, Yashnik S A, Zakharova O I. J. Phys. Chem. C, 2007, 111: 3080.
[21] Lisi L, Pirone R, Russo G, Santamaria N, Stanzione V. Appl. Catal. A, 2011, 413/414: 117.
[22] Olsson L, Sjövall H, Blint R J. Appl. Catal. B, 2009, 87: 200.
[23] Tajima N, Hashimoto M, Toyama F, El-Nahas A M, Hirao K. Phys. Chem. Chem. Phys., 1999, 1: 3823.
[24] Fierro G, Ferraris G, Moretti G. Appl. Catal. B, 2009, 91: 499.
[25] Zhang Y, Flytzani-Stephanopoulos M. J. Catal., 1996, 164: 131.
[26] 曲虹霞(Qu H X), 钟秦(Zhong Q), 邓选英(Deng X Y). 中国环境科学(China Environmental Science), 2006, 26(4): 395.
[27] Li Z, Flytzani-Stephanopoulos M. Appl. Catal. A., 1997, 165: 15.
[28] Pârvulescu V I, Oelker P, Grange P, Delmon B. Appl. Catal. B, 1998, 16: 1.
[29] Pârvulescu V I, Grange P, Delmon B. Appl. Catal. B, 2001, 33: 223.
[30] Pârvulescu V I, Centeno M A, Dupont O, Bârjega R, Ganea R, Delmon B, Grange P. Catal. Today, 1999, 54: 507.
[31] 单学蕾(Shan X L), 关乃佳(Guan N J), 曾翔(Zeng X), 陈继新(Chen J X), 项寿鹤(Xiang S H), Illgen U, Baerns M. 催化学报(Chinese Journal of Catalysis), 2001, 22(3): 242.
[32] Kustova M Y, Rasmussen S B, Kustov A L, Christensen C H. Appl. Catal. B, 2006, 67: 60.
[33] Chen F, Ma L, Cheng D, Zhan X. Catal. Commun., 2012, 18: 110.
[34] 孙亮(Sun L), 许悠佳(Xu Y J), 曹青青(Cao Q Q), 胡冰清(Hu B Q), 王超(Wang C), 荆国华(Xing G H). 化学进展(Progress in Chemistry), 2010, 22(10): 1882.
[35] 刘福东(Liu F D), 单文坡(Shan W P), 石晓燕(Shi X Y), 贺泓(He H). 化学进展(Progress in Chemistry), 2012, 24(4): 445.
[36] Olsson L, Sjövall H, Blint R J. Appl. Catal. B, 2008, 81: 203.
[37] Metkar P S, Harold M P, Balakotaiah V. Appl. Catal. B, 2012, 111/112: 67.
[38] Choi E, Nam I, Kim Y G. J. Catal., 1996, 161: 597.
[39] Komatsu T, Nunokawa M, Moon I S, Takahara T, Namba S, Yashima T. J. Catal., 1994, 148: 427.
[40] Eng J, Bartholomew C H. J. Catal., 1997, 171: 27.
[41] Sjövall H, Blint R J, Olsson L. Appl. Catal. B, 2009, 92: 138.
[42] Stevenson S A, Vartuli J C, Brooks C F. J. Catal., 2000, 190: 228.
[43] Devadas M, Kröcher O, Elsener M, Wokaun A, Söger N, Pfeifer M, Demel Y, Mussmann L. Appl. Catal. B, 2006, 67: 187.
[44] Ciardelli C, Nova I, Tronconi E, Chatterjee D, Bandl-Konrad B, Weibel M, Krutzsch B. Appl. Catal. B, 2007, 70: 80.
[45] Seo C K, Choi B, Kim H, Lee C H, Lee C B. Chem. Eng. J., 2012, 191: 331.
[46] Sjövall H, Olsson L, Fridell E, Blint R J. Appl. Catal. B, 2006, 64: 180.
[47] Park J, Park H J, Baik J H, Nam I, Shin C, Lee J, Cho B K, Oh S H. J. Catal., 2006, 240: 47.
[48] Sultana A, Nanba T, Haneda M, Sasaki M, Hamada H. Appl. Catal. B, 2010, 101: 61.
[49] Li Z, Li D, Huang W, Xie K. J. Nat. Gas Chem., 2005, 14: 115.
[50] Ma A, Muhler M, Grünert W. Appl. Catal. B, 2000, 27: 37.
[51] Wang J, Tian D, Han L, Chang L, Bao W. T. Nonferr. Metal. Soc., 2011, 21: 353.
[52] 张秋林(Zhang Q L), 邱春天(Qiu C T), 徐海迪(Xu H D), 林涛(Lin T), 龚茂初(Gong M C), 陈耀强(Chen Y Q). 催化学报(Chinese Journal of Catalysis), 2010, 31: 1411.
[53] Metkar P S, Balakotaiah V, Harold M P. Chem. Eng. Sci., 2011, 66: 5192.
[54] Iwamoto M, Yahiro H, Yuu Y. Shokubai, 1990, 32: 430.
[55] Held W, Koening A, Richter T, Puppe L. SAE Paper 900496, 1990, SP-810: 13.
[56] Jia M J, Zhang W X, Wu T H. J. Mol. Catal. A: Chem., 2002, 185: 151.
[57] Yashnik S A, Ismagilov Z R, Anufrienko V F. Catal. Today, 2005, 110: 310.
[58] Krivoruchko O P, Larina T V, Shutilov R A, Gavrilov V Y, Yashnik S A, Sazonov V A, Molina I Y, Ismagilov Z R. Appl. Catal. B, 2011, 103: 1.
[59] Korhonen S T, Fickel D W, Lobo R F, Weckhuysen B M, Beale A M. Chem. Commun., 2010, 47: 800.
[60] ?apek L, Vradman L, Sazama P, Herskowitz M, Wichterlová B, Zukerman R, Brosius R, Martens J A. Appl. Catal. B, 2007, 70: 53.
[61] Děde?ek J, ?apek L, Wichterlová B. Appl. Catal. A, 2006, 307: 156.
[62] Ingelsten H H, Hildesson Å, Fridell E, Skoglundh M. J. Mol. Catal. A, 2004, 209: 199.
[63] Ingelsten H H, Skoglundh M. Catal. Lett., 2006, 106: 15.
[64] Ingelsten H H, Zhao D, Palmqvist A, Skoglundh M. J. Catal., 2005, 232: 68.
[65] Sadykov V A, Lunin V V, Matyshak V A, Paukshtis E A, Rozovskii A Y, Bulgakov N N, Ross J R H. Kinet. Catal., 2003, 44: 379.
[66] Sadykov V A, Baron S L, Matyshak V A, Alikina G M, Bunina R V, Rozovskii A Ya, Luniv V V, Lunina E V, Kharlanov A N, Ivanova A S, Veniaminov S A. Catal. Lett., 1996, 37: 157.
[67] Yumura T, Hasegawa S, Itadani A, Kobayashi H, Kuroda Y. Materials, 2010, 3: 2516.
[68] Cho B K, Yie J E, Rahmoeller K M. J. Catal., 1995, 157: 14.
[69] Centi G, Perathoner S. Catal. Today, 1996, 29: 117.
[70] Liu Z, Woo S I. Catal. Rev., 2006, 48: 43.
[71] Cant N W, Liu I O Y. Catal. Today, 2000, 63: 133.
[72] Cant N W, Chambers D C, Cowan A D, Liu I O Y, Satsuma A. Top. Catal., 2000, 10: 13.
[73] Satsuma A, Cowan A D, Cant N W, Trimm D L. J. Catal., 1999, 181: 165.
[74] Poignant F, Freysz J L, Daturi M, Saussey J. Catal. Today, 2001, 70: 197.
[75] Vergne S, Berreghis A, Tantet J, Canaff C, Magnoux P, Guisnet M, Davias N, Noirot R. Appl. Catal. B, 1998, 18: 37.
[76] Liu I O Y, Cant N W, Haynes B S, Nelson P F. J. Catal., 2001, 203: 487.
[77] Schay Z, Guczi L, Beck A, Nagy I, Samuel V, Mirajkar S P, Ramaswamy A V, Pál-Borbély G. Catal. Today, 2002, 75: 393.
[78] Wang X, Xu Y, Yu S, Wang C. Catal. Lett., 2005, 103: 101.
[79] Yu Q, Wang X, Xing N, Yang H, Zhang S. J. Catal., 2007, 245: 124.
[80] Shimizu K, Maeshima H, Satsuma A, Hattori T. Appl. Catal. B, 1998, 18: 163.
[81] ?apek L, Novoveská K, Sobalík Z, Wichterlová B, Cider L, Jobson E. Appl. Catal. B, 2005, 60: 201.
[82] Janas J, Rojek W, Shishido T, Dzwigaj S. Appl. Catal. B, 2012, 123/124: 134.
[83] Janas J, Gurgul J, Socha R P, Dzwigaj S. Appl. Catal. B, 2009, 91: 217.
[84] Janas J, Gurgul J, Socha R P, Shishido T, Che M, Dzwigaj S. Appl. Catal. B, 2009, 91: 113.
[85] Erkfeldt S, Palmqvist A, Jobson E. Top. Catal., 2007, 42: 149.
[86] Erkfeldt S, Palmqvist A, Petersson M. Appl. Catal. B, 2011, 102: 547.
[87] Komvokis V G, Iliopoulou E F, Vasalos I A, Triantafyllidis K S, Marshall C L. Appl. Catal. A, 2007, 325: 345.
[88] Landi G, Lisi L, Pirone R, Russo G, Tortorelli M. Catal. Today, 2012, 191: 138.
[89] Yashnik S A, Salnikov A V, Vasenin N T, Anufrienko V F, Ismagilov Z R. Catal. Today, 2012, 197: 214.
[90] Neylon M K, Castagnola M J, Castagnola N B, Marshall C L. Catal. Today, 2004, 96: 53.
[91] Castagnola M J, Neylon M K, Marshall C L. Catal. Today, 2004, 96: 61.
[92] Sowade T, Liese T, Schmidt C, Schütze F W, Yu X, Berndt H, Grünert W. J. Catal., 2004, 225: 105.
[93] 李兰冬(Li L D), 章福祥(Zhang F X), 关乃佳(Guan N J), 冯洪庆(Feng H Q), 刘德新(Liu D X). 催化学报(Chinese Journal of Catalysis), 2006, 27(1): 41.
[94] Li L, Zhang F, Guan N, Richter M, Fricke R. Catal. Commun., 2007, 8: 583.
[95] Öhman L O, Ganemi B, Björnbom E, Rahkamaa K, Keiski R L, Paul J. Mater. Chem. Phys., 2002, 73: 263.

[1] 毕洪飞, 刘劲松, 吴正颖, 索赫, 吕学良, 付云龙. 硫化铟锌的改性合成及光催化特性*[J]. 化学进展, 0, (): 201111-201111.
[2] 冀豪栋, 齐娟娟, 郑茂盛, 党晨原, 陈龙, 黄韬博, 刘文. 纳米技术在水中病毒灭活中的应用:对新型冠状病毒SARS-CoV-2传播阻断的启示[J]. 化学进展, 0, (): 0-0.
[3] 程丽丽, 章赟, 朱烨坤, 吴瑛. 选择性氧化HMF的研究及展望[J]. 化学进展, 0, (): 8-0.
[4] 朱燕燕, 岳宗洋, 边文, 刘瑞林, 马晓迅, 王晓东. 六铝酸盐结构及其在高温反应中的应用[J]. 化学进展, 2018, 30(12): 1992-2002.
[5] 管杰, 孙玲娜, 徐琴*, 胡效亚*. 分子印迹型二氧化钛及其复合材料的合成和应用[J]. 化学进展, 2018, 30(11): 1749-1760.
[6] 李春雪, 乔宇, 林雪, 车广波. 量子点@金属有机骨架材料的制备及在光催化降解领域的应用[J]. 化学进展, 2018, 30(9): 1308-1316.
[7] 安俊健, 王梦玲, 黄梦璇, 王鹏, 张光彦. 纳米铁酸铋及其改性物的环境催化性能[J]. 化学进展, 2018, 30(9): 1298-1307.
[8] 吕记巍, 敖先权*, 陈前林, 谢燕, 曹阳, 张纪芳. 煤气化可弃型催化剂[J]. 化学进展, 2018, 30(9): 1455-1462.
[9] 刘文巧, 李臻, 夏春谷. 酸功能化离子液体固相催化材料的制备及应用[J]. 化学进展, 2018, 30(8): 1143-1160.
[10] 袁梦娅, 陈孝云*, 林生岭*. 功能化烯胺的合成[J]. 化学进展, 2018, 30(8): 1082-1096.
[11] 闫吉军, 康传清*, 高连勋. 阴离子-萘四酸双酰亚胺相互作用及其应用[J]. 化学进展, 2018, 30(7): 902-912.
[12] 刘孟岩, 王元双, 邓雯, 温珍海. 铜基电催化剂还原CO2[J]. 化学进展, 2018, 30(4): 398-409.
[13] 肖瑶, 胡文娟, 任衍彪, 康旭, 刘健. 仿生光电催化固氮[J]. 化学进展, 2018, 30(4): 325-337.
[14] 冯云超, 左淼, 曾宪海*, 孙勇, 唐兴, 林鹿*. 葡萄糖制备5-羟甲基糠醛[J]. 化学进展, 2018, 30(2/3): 314-324.
[15] 佘远斌, 邓金辉, 张龙, 沈海民*. 氧气催化氧化环己烷[J]. 化学进展, 2018, 30(1): 124-136.