English
新闻公告
More
化学进展 2014, Vol. 26 Issue (01): 1-9 DOI: 10.7536/PC130853 前一篇   后一篇

所属专题: 电化学有机合成

• 特约稿 •

DNA损伤的光电化学传感器检测

吴一萍, 郭良宏*   

  1. 中国科学院生态环境研究中心环境化学与生态毒理学国家重点实验室 北京 100085
  • 收稿日期:2013-08-01 修回日期:2013-10-01 出版日期:2014-01-15 发布日期:2013-11-08
  • 通讯作者: 郭良宏,e-mail:LHGuo@rcees.ac.cn E-mail:LHGuo@rcees.ac.cn
  • 基金资助:

    国家杰出青年科学基金项目(No. 20825519)和国家自然科学基金项目(No. 21375143)资助

Photoelectrochemical Sensors for the Detection of DNA Damage

Wu Yiping, Guo Lianghong*   

  1. State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
  • Received:2013-08-01 Revised:2013-10-01 Online:2014-01-15 Published:2013-11-08
  • Supported by:

    The work was supported by the National Science Foundation for Distinguished Young Scholars of China(No. 20825519) and the National Natural Science Foundation of China (No. 21375143)

DNA是生物体主要的遗传物质,DNA损伤在生物体内经常发生。一些内源性和外源性物质可对细胞核内DNA造成氧化和修饰等结构性损伤。未经修复的损伤DNA可导致基因突变甚至癌症的发生。DNA电化学传感器具有快速、灵敏、低成本和易于小型化等优势,非常适用于化学品和环境化合物致DNA损伤毒性的快速筛查。本文首先简要介绍目前流行的DNA电化学传感器的类型和工作原理,然后以我们实验室的工作为基础,重点论述针对DNA损伤检测的电化学和光电化学传感器,包括用于化合物基因毒性快速鉴定的通用型传感器和特定DNA损伤产物(8-羟基脱氧鸟苷,甲基化DNA碱基)定量检测的专用型传感器。最后对DNA损伤电化学传感器目前存在的问题和未来可能的发展方向进行展望。

DNA is a kind of genetic material that encodes the genetic instructions used in the development and functioning of all known living organisms and many viruses. DNA damage occurs frequently in organisms. Some endogenous and exogenous chemicals have been found to induce structural damages to nuclear DNA by base oxidation or modification. If unrepaired, these damaged DNA may lead to gene mutation and even tumor generation. Due to their short response time, high sensitivity, low cost and ease of miniaturization, electrochemical DNA sensors are well qualified for the rapid screening of industrial and environmental chemicals for their potential geno-toxicity. This review article first introduces briefly the types and working mechanisms of current electrochemical DNA sensors. Then it describes in more detail the work on electrochemical and photoelectrochemical sensors for the detection of DNA damage, based largely on the work of our own laboratory, including general type sensors for the rapid screening of industrial and environmental chemicals with potential geno-toxicity, as well as specific type sensors for the identification and quantification of DNA damage products such as 8-oxodGuo and methylated DNA bases. In the end, the existing problems and future research directions of the DNA damage electrochemical sensors are discussed.

Contents
1 Introduction
2 Types of DNA electrochemical sensors
3 Electrochemical sensors for DNA damage detection
4 Photoelectrochemical sensors for DNA damage detection
4.1 Photoelectrochemical detection method
4.2 Sensing mechanisms for DNA damage detection
4.3 General-type sensors
4.4 Specific-type sensors
4.5 Investigation of chemical-induced DNA damage
5 Conclusions and perspectives

中图分类号: 

()

[1] Rajski S R, Jackson B A, Barton J K. Mutat. Res. Fund. Mol. M., 2000, 447: 49.
[2] Palecek E, Fojta M. in Bioelectronics. Wiley-VCH Verlag GmbH & Co. KGaA, 2005. 127.
[3] Friedberg E C. Nature, 2003, 421: 436.
[4] Schärer O D. Angew. Chem. Int. Ed., 2003, 42: 2946.
[5] England T G, Jenner A, Aruoma O I, Halliwell B. Free Radical Res., 1998, 29: 321.
[6] Helbock H J, Beckman K B, Shigenaga M K, Walter P B, Woodall A A, Yeo H C, Ames B N. Proc. Natl. Acad. Sci. U. S. A., 1998, 95: 288.
[7] Jenner A, England T G, Aruoma O I, Halliwell B. Biochem. J., 1998, 331: 365.
[8] Cadet J, D'Ham C, Douki T, Pouget J P, Ravanat J L, Sauvaigo S. Free Radical Res., 1998, 29: 541.
[9] Ciolkowski M L, Fang M M, Lund M E. J. Pharmaceut. Biomed., 2000, 22: 1037.
[10] Wang J, Jiang M, Palecek E. Bioelectrochem. Bioenerg., 1999, 48: 477.
[11] Pope L H, Allen S, Davies M C, Roberts C J, Tendler S J B, Williams P M. Langmuir, 2001, 17: 8300.
[12] 张先恩(Zhang X E). 生物传感器(Biosensor). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2006. 6.
[13] Pale?ek E. Progress in Nucleic Acid Research and Molecular Biology (Ed. Cohn W E), 1976, 18: 151.
[14] Pale?ek E, Fojta M. Anal. Chem., 2001, 73: 74A.
[15] Johnston D H, Thorp H H. J. Phys. Chem., 1996, 100: 13837.
[16] Johnston D H, Glasgow K C, Thorp H H. J. Am. Chem. Soc., 1995, 117: 8933.
[17] Pale?ek E, Hung M A. Anal. Biochem., 1983, 132: 236.
[18] Pale?ek E, Vojtíšková M, Jelen F, Lukášová E. Bioelectrochem. Bioenerg., 1984, 12: 135.
[19] Lukášova E, Jelen F, Pale?ek E. Gen. Physiol. Biophys., 1982, 1: 53.
[20] Jelen F, Kalovský P, Makaturová E, Pe?inka P, Pale?ek E. Gen. Physiol. Biophys., 1991, 10: 461.
[21] Ozsoz M, Erdem A, Kerman K, Ozkan D, Tugrul B, Topcuoglu N, Ekren H, Taylan M. Anal. Chem., 2003, 75: 2181.
[22] Zhu N, Cai H, He P, Fang Y. Anal. Chim. Acta, 2003, 481: 181.
[23] Fojta M, Pale?ek E. Anal. Chim. Acta, 1997, 342: 1.
[24] Jelen F, Fojta M, Pale?ek E. J. Electroanal. Chem., 1997, 427: 49.
[25] Jelen F, Tomschik M, Pale?ek E. J. Electroanal. Chem., 1997, 423: 141.
[26] Dennany L, Forster R J, White B, Smyth M, Rusling J F. J. Am. Chem. Soc., 2004, 126: 8835.
[27] Mbindyo J, Zhou L, Zhang Z, Stuart J D, Rusling J F. Anal. Chem., 2000, 72: 2059.
[28] Zhou L, Rusling J F. Anal. Chem., 2001, 73: 4780.
[29] Mugweru A, Rusling J F. Anal. Chem., 2002, 74: 4044.
[30] Yang J, Zhang Z, Rusling J F. Electroanalysis, 2002, 14: 1494.
[31] Dennany L, Forster R J, Rusling J F. J. Am. Chem. Soc., 2003, 125: 5213.
[32] Munge B, Estavillo C, Schenkman J B, Rusling J F. Chem. Bio. Chem., 2003, 4: 82.
[33] Rusling J F, Forster R J. J. Colloid Interf. Sci., 2003, 262: 1.
[34] Wang B Q, Rusling J F. Anal. Chem., 2003, 75: 4229.
[35] Zhou L P, Yang J, Estavillo C, Stuart J D, Schenkman J B, Rusling J F. J. Am. Chem. Soc., 2003, 125: 1431.
[36] Rusling J F. Biosens. Bioelectron., 2004, 20: 1022.
[37] Hvastkovs E G, So M, Krishnan S, Bajrami B, Tarun M, Jansson I, Schenkman J B, Rusling J F. Anal. Chem., 2007, 79: 1897.
[38] So M, Hvastkovs E G, Schenkman J B, Rusling J F. Biosens. Bioelectron., 2007, 23: 492.
[39] Hvastkovs E G, So M, Krishnan S, Bajrami B, Tarun M, Jansson I, Schenkman J B, Rusling J F. Anal. Chem., 2008, 80: 2272.
[40] Zu Y, Liu H, Zhang Y, Hu N. Electrochim. Acta, 2009, 54: 2706.
[41] Cahova-Kucharikova K, Fojta M, Mozga T, Palecek E. Anal. Chem., 2005, 77: 2920.
[42] Liu Y, Hu N. Biosens. Bioelectron., 2009, 25: 185.
[43] Drummond T G, Hill M G, Barton J K. Nat. Biotechnol., 2003, 21: 1192.
[44] Boon E M, Barton J K. Curr. Opin. Struc. Biol., 2002, 12: 320.
[45] Boon E M, Ceres D M, Drummond T G, Hill M G, Barton J K. Nat. Biotechnol., 2000, 18: 1096.
[46] Kelley S O, Jackson N M, Hill M G, Barton J K. Angew. Chem. Int. Ed., 1999, 38: 941.
[47] Kalyanasundaram K, Grätzel M. Coordin. Chem. Rev., 1998, 177: 347.
[48] Dong D, Zheng D, Wang F Q, Yang X Q, Wang N, Li Y G, Guo L H, Cheng J. Anal. Chem., 2003, 76: 499.
[49] Chen D, Zhang H, Li X, Li J H. Anal. Chem., 2010, 82: 2253.
[50] Lu W, Wang G, Jin Y, Yao X, Hu J Q, Li J H. Appl. Phys. Lett., 2006, 89: 263902.
[51] Lu W, Jin Y, Wang G, Chen D, Li J H. Biosens. Bioelectron., 2008, 23: 1534.
[52] Liang M, Liu S, Wei M, Guo L H. Anal. Chem., 2005, 78: 621.
[53] Holmlin R E, Stemp E D A, Barton J K. Inorg. Chem., 1998, 37: 29.
[54] Liang M, Guo L H. Environ. Sci. Technol., 2007, 41: 658.
[55] Liang M, Jia S, Zhu S, Guo L H. Environ. Sci. Technol., 2008, 42: 635.
[56] Beckman K B, Ames B N. J. Biol. Chem., 1997, 272: 19633.
[57] Wu L L, Chiou C C, Chang P Y, Wu J T. Clin. Chim. Acta, 2004, 339: 1.
[58] Kawanishi S, Hiraku Y, Murata M, Oikawa S. Free Radical Bio. Med., 2002, 32: 822.
[59] Singh N, Manshian B, Jenkins G J S, Griffiths S M, Williams P M, Maffeis T G G, Wright C J, Doak S H. Biomaterials, 2009, 30: 3891.
[60] Mugweru A, Wang B, Rusling J F. Anal. Chem., 2004, 76: 5557.
[61] Wrona M Z, Owens J L, Dryhurst G. J. Electroanal. Chem. Interfacial Electrochem., 1979, 105: 295.
[62] Poje M, Sokoli D? -Maravi D? L. Tetrahedron, 1986, 42: 747.
[63] Hosford M E, Muller J G, Burrows C J. J. Am. Chem. Soc., 2004, 126: 9540.
[64] Xue L, Greenberg M M. J. Am. Chem. Soc., 2007, 129: 7010.
[65] Zhang B, Guo L H, Greenberg M M. Anal. Chem., 2012, 84: 6048.
[66] Bergeron F, Auvré F, Radicella J P, Ravanat J L. Proc. Natl. Acad. Sci. U. S. A., 2010, 107: 5528.
[67] Box H C, Budzinski E E, Dawidzik J B, Gobey J S, Freund H G. Free Radical Bio. Med., 1997, 23: 1021.
[68] Beranek D T, Weis C C, Swenson D H. Carcinogenesis, 1980, 1: 595.
[69] Singer B. Molecular Biology of Mutagens and Carcinogens. NY: Plenum Press, 1983.
[70] Chaudhuri I, Essigmann J M. Carcinogenesis, 1991, 12: 2283.
[71] Lindahl T, Sedgwick B, Sekiguchi M, Nakabeppu Y. Annu. Rev. Biochem., 1988, 57: 133.
[72] Ezaz-Nikpay K, Verdine G L. Chem. Biol., 1994, 1: 235.
[73] Wu Y P, Zhang B T, Guo L H. Anal. Chem., 2013, 85: 6908.
[74] Imlay J, Chin S, Linn S. Science, 1988, 240: 640.
[75] Kasai H. Mutat. Res. Rev. Mutat., 1997, 387: 147.
[76] Toyokuni S. Free Radical Bio. Med., 1996, 20: 553.
[77] Valko M, Morris H, Cronin M T D. Curr. Med. Chem., 2005, 12: 1161.
[78] Valko M, Rhodes C J, Moncol J, Izakovic M, Mazur M. Chem. Biol. Interact., 2006, 160: 1.
[79] Luo Y, Han Z, Chin S M, Linn S. Proc. Natl. Acad. Sci. U. S. A., 1994, 91: 12438.
[80] Jia S, Liang M, Guo L H. J. Phys. Chem B, 2008, 112: 4461.
[81] Lin P H, La D K, Upton P B, Swenberg J A. Carcinogenesis, 2002, 23: 365.
[82] Meerman J H N, Beland F A, Mulder G J. Carcinogenesis, 1981, 2: 413.
[83] Zhu B Z, Kitrossky N, Chevion M. Biochem. Biophys. Res. Commun., 2000, 270: 942.
[84] Zhu B Z, Zhao H T, Kalyanaraman B, Frei B. Free Radical Bio. Med., 2002, 32: 465.
[85] Jia S, Zhu B Z, Guo L H. Anal. Bioanal. Chem., 2010, 397: 2395.
[86] Pang S W, Park H Y, Jang Y S, Kim W S, Kim J H. Colloids. Surf. B, 2002, 26: 213.
[87] Fritz H, Maier M, Bayer E. J. Colloid Interf. Sci., 1997, 195: 272.
[88] Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh J I, Wiesner M R, Nel A E. Nano Letters, 2006, 6: 1794.
[89] Xia T, Kovochich M, Liong M, Zink J I, Nel A E. ACS Nano, 2007, 2: 85.
[90] Zhang B T, Du X, Jia S P, He J H, Guo L H. Sci. China Chem., 2011, 54: 1260.

[1] 梁晨希, 曹立新*, 张跃娟, 闫培生. 海洋毒素电化学生物传感器[J]. 化学进展, 2018, 30(7): 1028-1034.
[2] 李庆川, 曹立新, 胡海峰, 王凯, 闫培生. 黄曲霉毒素电化学生物传感器[J]. 化学进展, 2014, 26(04): 657-664.
阅读次数
全文


摘要

DNA损伤的光电化学传感器检测