English
新闻公告
More
化学进展 2014, Vol. 26 Issue (04): 529-544 DOI: 10.7536/PC130834 前一篇   后一篇

• 综述与评论 •

硫化学反应体系中的振荡与斑图形成

袁玲, 刘洋, 杨涛, 刘海苗, 高庆宇*   

  1. 中国矿业大学化工学院 徐州 221008
  • 收稿日期:2013-08-01 修回日期:2013-10-01 出版日期:2014-04-15 发布日期:2014-01-20
  • 通讯作者: 高庆宇,e-mail:gaoqy@cumt.edu.cn E-mail:gaoqy@cumt.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 21073232,51221462)、江苏省自然科学基金重点专项(No. BK2011006)、江苏省普通高校研究生科研创新计划项目(No. CXLX12_0961)和中央直属高校科研业务费(No. 2012QNA17,2013XK05)资助

Oscillations and Pattern Formation in Sulfur-Contained Reaction Systems

Yuan Ling, Liu Yang, Yang Tao, Liu Haimiao, Gao Qingyu*   

  1. College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221008, China
  • Received:2013-08-01 Revised:2013-10-01 Online:2014-04-15 Published:2014-01-20
  • Supported by:

    This work was supported by National Natural Science Foundation of China (No. 21073232, 51221462), Natural Science Foundation of Jiangsu Province (No.BK2011006), the Scientific Research and Innovation Project for College Postgraduate of Jiangsu Province (No. CXLX12_0961) and the Fundamental Research Fund from Chinese Central University (No. 2012QNA17, 2013XK05)

硫化学非线性反应体系是非线性化学的一个重要部分,在均相和反应扩散介质中均表现复杂自组织现象,尤其该类体系在前沿波作用、迷宫波及倍增分裂波研究和近几年斑图系统设计的突破起着关键作用。根据参与的物种数量将硫化学反应体系分为简单的两组分和三组分反应体系两大类。本文重点介绍了近三十年来这两类硫化学振荡器和反应-扩散斑图的研究进展,简述了该类反应体系在生物及其软物质领域的应用。最后,对硫化学振荡体系研究中存在的问题进行了探讨,并对今后的研究方向进行了展望。

Sulfur-contained nonlinear reaction system is a significant branch of nonlinear chemistry, which can display complicated dynamics both in the homogeneous and reaction-diffusion medium. In particular, it also plays a critical role in the aspect of fronts interaction, labyrinthic pattern, self-replication pattern and systematical design of pattern formation in recent years. According to the number of oscillatory components, sulfur-contained oscillatory systems are mainly divided into two-component systems and three-component systems. The progress on sulfur-contained compound oscillators and pattern formation during the past three decades are introduced in the review. Furthermore, the potential application of the sulfur-contained oscillators and the involved reaction systems in biological field and responsive gel medium are systematically summarized. The difficulties existed in this active field are discussed in detail and the future directions are prospected.

Contents
1 Introduction
2 Sulfur-contained oscillators
2.1 Sulfur-contained oscillators with two components
2.2 Sulfur-contained oscillators with three components
2.3 Mechanism model for oscillators
3 Pattern formation in sulfur-contained systems
3.1 Patterns in the two-component systems
3.2 Patterns in three-component systems
3.3 Reaction diffusion model for sulfur-contained nonlinear chemical systems
4 pH oscillators of sulfur-contained coupled with biological molecular and soft matter
4.1 Coupling with biological molecular
4.2 Coupling with soft matter
5 Conclusions and outlook

中图分类号: 

()

[1] Bray W C. J. Am. Chem. Soc., 1921, 43: 1262.
[2] Belousov B P. Compilation of Abstracts on Radiation Medicine, 1959, 147: 1.
[3] Nicolis G, Prigogine I. Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order Through Fluctuations. New York: Wiley-Interscience, 1977.
[4] Orbán M, de Kepper P, Epstein I R. J. Am. Chem. Soc., 1982, 104: 2657.
[5] Orbán M, de Kepper P, Epstein I R. J. Phys. Chem., 1982, 86: 431.
[6] Rábai G, Szanto T G, Kovacs K. J. Phys. Chem. A, 2008, 112: 12007.
[7] Orbán M, Epstein I R. J. Phys. Chem., 1982, 86: 3907.
[8] Doona C J, Doumbouya S I. J. Phys. Chem., 1994, 98: 513.
[9] Lee K J, Mccormick W D, Ouyang Q, Swinney H L. Science, 1993, 261: 192.
[10] Rushing C W, Thompson R C, Gao Q. J. Phys. Chem. A, 2000, 104: 11561.
[11] Sagués F, Epstein I R. Dalton Transactions, 2003: 1201.
[12] Ouyang Q, Swinney H L. Chaos, 1991, 1: 411.
[13] Lee K J, Mccormick W D, Pearson J E, Swinney H L. Nature, 1994, 369: 215.
[14] Szalai I, De Kepper P. J. Phys. Chem. A, 2008, 112: 783.
[15] Szalai I, De Kepper P. Chaos, 2008, 18: 026105.
[16] Orbán M, Epstein I R. J. Am. Chem. Soc., 1985, 107: 2302.
[17] Rábai G, Orbán M, Epstein I R. J. Phys. Chem., 1992, 96: 5414.
[18] Orbán M, Epstein I R. J. Am. Chem. Soc., 1987, 109: 101.
[19] Rábai G, Epstein I R. J. Am. Chem. Soc., 1992, 114: 1529.
[20] Orbán M. J. Am. Chem. Soc., 1986, 108: 6893.
[21] Luo Y, Orbán M, Kustin K, Epstein I R. J. Am. Chem. Soc., 1989, 111: 4541.
[22] Kovács K M, Rábai G. J. Phys. Chem. A, 2001, 105: 9183.
[23] Mao S, Gao Q, Wang H, Zheng J, Epstein I R. J. Phys. Chem. A, 2009, 113: 1231.
[24] Orbán M, de Kepper P, Epstein I R. J. Phys. Chem. Lett., 1982, 86: 433.
[25] Maselko J, Epstein I R. J. Phys. Chem., 1984, 80: 3175.
[26] Alamgir M, Epstein I R. Int. J. Chem. Kinet., 1985, 17: 429.
[27] Gao Q, Wang J. Chem. Phys. Lett., 2004, 391: 349.
[28] Doona C J, Blittersdorf R, Schneider F W. J. Phys. Chem., 1993, 97: 7258.
[29] Simoyi R H, Noyes R M. J. Phys. Chem., 1987, 91: 2689.
[30] Simoyi R H. J. Phys. Chem., 1986, 90: 2802.
[31] Szántó T G, Rábai G. J. Phys. Chem. A, 2005, 109: 5398.
[32] Ouyang Q, De Kepper P. J. Phys. Chem., 1987, 91: 6040.
[33] Orbán M, Epstein I R. J. Am. Chem. Soc., 1989, 111: 2891.
[34] Orbán M, Epstein I R. J. Am. Chem. Soc., 1990, 112: 1812.
[35] Rábai G, Beck M T, Kustin K, Epstein I R. J. Phys. Chem., 1989, 93: 2853.
[36] Bakes D, Schreiberova L, Schreiber I, Hauser M J. Chaos, 2008, 18: 015102.
[37] Yuan L, Gao Q, Zhao Y, Tang X, Epstein I R. J. Phys. Chem. A, 2010, 114: 7014.
[38] Kormanyos B, Nagypál I, Peintler G, Horváth A K. Inorg. Chem., 2008, 47: 7914.
[39] Peintler G, Nagypál I, Epstein I R. J. Phys. Chem., 1990, 94: 2954.
[40] Varga D, Horváth A K, Nagypál I. J. Phys. Chem. B, 2006, 110: 2467.
[41] Horváth A K, Nagypál I. Int. J. Chem. Kinet., 2000, 32: 395.
[42] Varga D, Horváth A K. J. Phys. Chem. A, 2009, 113: 13907.
[43] Horváth A K, Nagypál I. J. Phys. Chem. A, 1998, 102: 7267.
[44] Horváth A K, Nagypál I, Epstein I R. J. Phys. Chem. A, 2003, 107: 10063.
[45] Horváth A K, Nagypál I, Peintler G, Epstein I R. J. Am. Chem. Soc., 2004, 126: 6246.
[46] Horváth A K. J. Phys. Chem. A, 2005, 109: 5124.
[47] Horváth A K, Nagypál I, Epstein I R. Inorg. Chem., 2006, 45: 9877.
[48] Horváth A K, Nagypál I. J. Phys. Chem. A, 2006, 110: 4753.
[49] Cseko G, Horváth A K. J. Phys. Chem. A, 2012, 116: 2911.
[50] Varga D, Horváth A K. Inorg. Chem., 2007, 46: 7654.
[51] Xu L, Horváth A K, Hu Y, Ji C, Zhao Y, Gao Q. J. Phys. Chem. A, 2011, 115: 1853.
[52] Pan C, Wang W, Horváth A K, Xie J, Lu Y, Wang Z, Ji C, Gao Q. Inorg. Chem., 2011, 50: 9670.
[53] Pan C, Liu Y, Horváth A K, Wang Z, Hu Y, Ji C, Zhao Y, Gao Q. J. Phys. Chem. A, 2013, 117: 2924.
[54] Lu Y, Gao Q, Xu L, Zhao Y, Epstein I R. Inorg. Chem., 2010, 49: 6026.
[55] Frerichs G A, Mlnarik T M, Grun R J, Thompson R C. J. Phys. Chem. A, 2001, 105: 829.
[56] Rábai G. ACH-Models Chem., 1998, 135: 381.
[57] Landolt H. Chem. Ber., 1886, 19: 1317.
[58] Rábai G, Beck M T. J. Phys. Chem., 1988, 92: 2804.
[59] Rábai G, Beck M T. J. Phys. Chem., 1988, 92: 4831.
[60] Rábai G, Nagy Z V, Beck M T. React. Kinet. Catal. Lett., 1987, 33: 23.
[61] Liu H, Xie J, Yuan L, Gao Q. J. Phys. Chem. A, 2009, 113: 11295.
[62] Liu H, Horváth A K, Zhao Y, Lv X, Yang L, Gao Q. Phys. Chem. Chem. Phys., 2012, 14: 1502.
[63] Rábai G, Hanazaki I. J. Phys. Chem. A, 1999, 103: 7268.
[64] Burger M, Field R J. Nature, 1984, 307: 720.
[65] Resch P, Field R J, Schneider F W. J. Phys. Chem., 1989, 93: 2783.
[66] Resch P, Field R J, Schneider F W, Burger M. J. Phys. Chem., 1989, 93: 8181.
[67] Rábai G, Hanazaki I. J. Phys. Chem., 1996, 100: 15454.
[68] Rábai G, Hanazaki I. J. Phys. Chem., 1996, 100: 10615.
[69] Rábai G. J. Phys. Chem. A, 1997, 101: 7085.
[70] Chie K, Okazaki N, Tanimoto Y, Hanazaki I. Chem. Phys. Lett., 2001, 334: 55.
[71] Edblom E C, Orbán M, Epstein I R. J. Am. Chem. Soc., 1986, 108: 2826.
[72] Gaspar V, Showalter K. J. Am. Chem. Soc., 1987, 109: 4869.
[73] Edblom E C, Gyorgyi L, Orbán M, Epstein I R. J. Am. Chem. Soc., 1987, 109: 4876.
[74] Rábai G, Kaminaga A, Hanazaki I. J. Phys. Chem., 1995, 99: 9795.
[75] Edblom E C, Luo Y, Orban M, Kustin K, Epstein I R. J. Phys. Chem., 1989, 93: 2722.
[76] Kaminaga A, Rábai G, Mori Y, Hanazaki I. J. Phys. Chem., 1996, 100: 9389.
[77] Rábai G, Kustin K, Epstein I R. J. Am. Chem. Soc., 1989, 111: 3870.
[78] Rábai G, Kustin K, Epstein I R. J. Am. Chem. Soc., 1989, 111: 8271.
[79] Mori Y, Hanazaki I. J. Phys. Chem., 1993, 97: 7375.
[80] Mori Y, Hanazaki I. J. Phys. Chem., 1992, 96: 9083.
[81] Vanag V K, Mori Y, Hanazaki I. J. Phys. Chem., 1994, 98: 8392.
[82] Rábai G, Hanazaki I. J. Am. Chem. Soc., 1997, 119: 1458.
[83] Okazaki N, Rábai G, Hanazaki I. J. Phys. Chem. A, 1999, 103: 10915.
[84] Rábai G, Orban M. J. Phys. Chem., 1993, 97: 5935.
[85] Horváth A K. J. Phys. Chem. A, 2008, 112: 3935.
[86] Epstein I R, Pojman J A. An introduction to nonlinear Chemical Dynamics Oscillations, Waves, Patterns and waves. New York: Oxford University Press, 1998.
[87] Kapral R, Showalter K. Chemical waves and patterns. Springer, 1995.
[88] Turing A M. Phil. Trans. R. Soc. B, 1952, 237: 37.
[89] Castets V, Dulos E, Boissonade J, De Kepper P. Phys. Rev. Lett., 1990, 64: 2953.
[90] Pojman J A, Epstein I R. J. Phys. Chem., 1990, 94: 4966.
[91] Nagypál I, Bazsa G, Epstein I R. J. Am. Chem. Soc., 1986, 108: 3635.
[92] Zhivonitko V V, Koptyug I V, Sagdeev R Z. J. Phys. Chem. A, 2007, 111: 4122.
[93] Chinake C R, Simoyi R H. J. Phys. Chem., 1994, 98: 4012.
[94] Simoyi R H, Masere J, Muzimbaranda C, Manyonda M, Dube S. Int. J. Chem, Kinet., 1991, 23: 419.
[95] Martincigh B S, Chinake C R, Howes T, Simoyi R H. Phys. Rev. E, 1997, 55: 7299.
[96] Udovichenko V V, Strizhak P E, Toth A, Horváth D, Ning S, Maselko J. J. Phys. Chem. A, 2008, 112: 4584.
[97] Fuentes M, Kuperman M N, De Kepper P. J. Phys. Chem., A, 2001, 105: 6769.
[98] Horváth D, Toóth A G. J. Chem. Phys., 1998, 108: 1447.
[99] Tóth Á, Lagzi I, Horváth D. J. Phys. Chem., 1996, 100: 14837.
[100] Tóth Á, Horváth D, Siska A. J. Chem. Soc. Faraday Trans., 1997, 93: 73.
[101] Horváth D, Kiricsi M, Tóth Á. J. Chem. Soc. Faraday Trans., 1998, 94: 1217.
[102] Viranyi Z, Horváth D, Toth A. J. Phys. Chem. A, 2006, 110: 3614.
[103] Hele-Shaw H S. Nature, 1898, 58: 520.
[104] Gérard T, Tóth T, Grosfils P, Horváth D, De Wit A, Tóth A. Phys. Rev. E, 2012, 86.
[105] Casado G G, Tofaletti L, Muller D, D'Onofrio A. J Chem. Phys., 2007, 126: 114502.
[106] Schuszter G, Tóth T, Horváth D, Tóth Á. Phys. Rev. E, 2009, 79: 016216.
[107] Boissonade J, Dulos E, Gauffre F, Kuperman M N, de Kepper P. Faraday Discussions, 2002, 120: 353.
[108] Boissonade J, de Kepper P, Gauffre F, Szalai I. Chaos, 2006, 16: 037110.
[109] Fuentes M, Kuperman M N, Boissonade J, Dulos E, Gauffre F, De Kepper P. Phys. Rev. E, 2002, 66: 056205.
[110] Strier D, Boissonade J. Phys. Rev. E, 2004, 70: 016210.
[111] Keresztessy A, Nagy I P, Bazsa G, Pojman J A. J. Phys. Chem., 1995, 99: 5379.
[112] Pojman J A, Komlósi A, Nagy I P. J. Phys. Chem., 1996, 100: 16209.
[113] Nagy I P, Pojman J A. J. Phys. Chem., 1993, 97: 3443.
[114] Nagy I P, Keresztessy A, Pojman J A. J. Phys. Chem., 1995, 99: 5385.
[115] Viranyi Z, Szalai I, Boissonade J, De Kepper P. J. Phys. Chem. A, 2007, 111: 8090.
[116] Szalai I, De Kepper P. Phys. Chem. Chem. Phys., 2006, 8: 1105.
[117] Gao Q, An Y, Wang J. Phys. Chem. Chem. Phys., 2004, 6: 5389.
[118] Gao Q, Xie R. Chem. Phys. Chem., 2008, 9: 1153.
[119] Liu H, Pojman J A, Zhao Y, Pan C, Zheng J, Yuan L, Horváth A K, Gao Q. Phys. Chem. Chem. Phys., 2012, 14: 131.
[120] Watzl M, Münster A F. Chem. Phys. Lett., 1995, 242: 273.
[121] Kurin-Csrgei K, Orbán M, Zhabotinsky A M, Epstein I R. Chem. Phys. Lett., 1998, 295: 70.
[122] Fecher F, Strasser P, Eiswirth M, Schneider F W, Münster A F. Chem. Phys. Lett., 1999, 313: 205.
[123] Steinbock O, Kasper E, Müller S C. J. Phys. Chem. A, 1999, 103: 3442.
[124] Lee G, Ouyang Q, Swinney H L. J. Chem. Phys., 1996, 105: 10830.
[125] Szalai I, de Kepper P. Chaos, 2008, 18: 026105.
[126] Ouyang Q, Swinney H L. Nature, 1991, 352: 610.
[127] Ouyang Q, Noszticzius Z, Swinney H L. J. Phys. Chem., 1992, 96: 6773.
[128] Rudovics B, Dulos E, De Kepper P. Physi. Scr., 1996, T67: 43.
[129] Dulos E, Davies P, Rudovics B, De Kepper P. Physica D, 1996, 98: 53.
[130] De Kepper P, Dulos E, Boissonade J, De Wit A, Dewel G, Borckmans P. J. Stat. Phys., 2000, 101: 495.
[131] Perraud J J, de Wit A, Dulos E, De Kepper P, Dewel G, Borckmans P. Phys. Rev. Lett., 1993, 71: 1272.
[132] De Kepper P, Perraud J J, Rudovics B, Dulos E. Int. J. Bif. Chaos, 1994, 4: 1215.
[133] Davies P W, Blanchedeau P, Dulos E, de Kepper P. J. Phys. Chem. A, 1998, 102: 8236.
[134] Vigil R D, Ouyang Q, Swinney H L. Physica A, 1992, 188: 17.
[135] Asakura K, Konishi R, Nakatani T, Nakano T, Kamata M. J. Phys. Chem. B, 2011, 115: 3959.
[136] Dolnik M, Berenstein I, Zhabotinsky A, Epstein I R. Phys. Rev. Lett., 2001, 87: 238301.
[137] Berenstein I, Yang L, Dolnik M, Zhabotinsky A, Epstein I R. Phys. Rev. Lett., 2003, 91: 058302.
[138] Míguez D, Pérez-Villar V, Muuzuri A. Phys. Rev. E, 2005, 71: 066217.
[139] Lengyel I, Epstein I R. Science, 1991, 251: 650.
[140] Rudovics B, Barillot E, Davies P W, Dulos E, Boissonade J, de Kepper P. J. Phys. Chem. A, 1999, 103: 1790.
[141] Blanchedeau P, Boissonade J. Phy. Rev. Lett., 1998, 81: 5007.
[142] Horváth J, Szalai I, de Kepper P. Science, 2009, 324: 772.
[143] Horváth J, Szalai I, de Kepper P. Physica D, 2010, 239: 776.
[144] Szalai I, Horváth J, Takacs N, de Kepper P. Phys. Chem. Chem. Phys., 2011, 13: 20228.
[145] Szalai I, Cuinas D, Takacs N, Horváth J, De Kepper P. Interface Focus, 2012, 2: 417.
[146] Pearson J E. Science, 1993, 261: 189.
[147] Glass L, Mackey M C. From Clocks to Chaos: The Rhythms of Life. Princeton University Press, 1988.
[148] Goldbeter A, Keizer J. Phys. Today, 1998, 51: 86.
[149] Crook C J, Smith A, Jones R A L, Ryan A J. Phys. Chem. Chem. Phys., 2002, 4: 1367.
[150] Varga I, Szalai I, Meszaros R, Gilanyi T. J. Phys. Chem. B, 2006, 110: 20297.
[151] Giannos S A, Dinh S M, Berner B. J. Pharm. Sci., 1995, 84: 539.
[152] Ohmori T, Yu W, Yamamoto T, Endo A, Nakaiwa M, Amemiya T, Yamaguchi T. Chem. Phys. Lett., 2005, 407: 48.
[153] Liedl T, Simmel F C. Nano Lett., 2005, 5: 1894.
[154] Liedl T, Sobey T L, Simmel F C. Nano Today, 2007, 2: 36.
[155] Goodwin B C. Adv. Enzyme Regul., 1965, 3: 425.
[156] Dano S, Sorensen P G, Hynne F. Nature, 1999, 402: 320.
[157] Kar S, Shankar Ray D. J. Theor. Biol., 2005, 237: 58.
[158] Hess B, Brand K, Pye K. Biochem. Biophys. Res. Commun., 1966, 23: 102.
[159] Yoshida Y, Tsuchiya R, Matsumoto N, Morita M, Miyakawa H, Kudo Y. J. Pharmacol Sci., 2005, 97: 212.
[160] Harootunian A, Kao J, Paranjape S, Tsien R. Science, 1991, 251: 75.
[161] Mahowald M W, Schenck C H. Nature, 2005, 437: 1279.
[162] Vanag V K. J. Phys. Chem. A, 1998, 102: 601.
[163] Frerichs G A, Thompson R C. J. Phys. Chem. A, 1998, 102: 8142.
[164] Hauser M J B, Strich A, Bakos R, Nagy-Ungvarai Z, Müller S C. Faraday Discussions, 2002, 120: 229.
[165] Misra G. J. Controlled Release, 2002, 79: 293.
[166] Kurin-Csrgei K, Epstein I R, Orbán M. Nature, 2005, 433: 139.
[167] Kurin-Csrgei K, Epstein I R, Orbán M. J. Phys. Chem. A, 2006, 110: 7588.
[168] Horváth V, Kurin-Csrgei K, Epstein I R, Orbán M. J. Phys. Chem. A, 2008, 112: 4271.
[169] Kovács K, Leda M, Vanag V K, Epstein I R. J. Phys. Chem. A, 2009, 113: 146.
[170] Kuksenok O, Yashin V V, Balazs A C. Soft Matter, 2007, 3: 1138.
[171] Ghosh P, Spiro T G. J. Am. Chem. Soc., 1980, 102: 5543.
[172] Yoshida R. Ichijo H, Hakuta T, Yamaguchi T. Macr. Rapid Commun., 1995, 16: 305.
[173] Labrot V, De Kepper P, Boissonade J, Szalai I, Gauffre F T. J. Phys. Chem. B, 2005, 109: 21476.
[174] Yang L, Zhabotinsky A M, Epstein I R. Phys. Rev. Lett., 2004, 92: 198303.
[175] Rábai G. Phys. Chem. Chem. Phys., 2011, 13: 13604.
[176] Poros E, Horváth V, Kurin-Csergei K, Epstein I R, Orbán M. J. Am. Chem. Soc., 2011, 133: 7174.
[177] Lu X, Ren L, Gao Q, Zhao Y, Wang S, Yang J, Epstein I R. Chem. Commun., 2013, 49: 7690.

[1] 潘志君, 庄巍, 王鸿飞. 凝聚态化学研究中的动力学振动光谱理论与技术[J]. 化学进展, 2020, 32(8): 1203-1218.
[2] 张春芳, 马海涛, 边文生*. 化学反应的高精度从头算势能面[J]. 化学进展, 2012, 24(06): 1082-1093.
[3] 路兴杰, 赵跃民, 任林, 杨莹莹, 高庆宇*. 光敏性BZ反应的时空动力学[J]. 化学进展, 2012, 24(05): 709-721.
[4] 彭晓敏, 张金超, 高愈希, 柴之芳. 金属蛋白的提取分离技术[J]. 化学进展, 2012, 24(05): 834-843.
[5] 苑春刚,X.Chris Le. 砷形态分析[J]. 化学进展, 2009, 21(0203): 467-473.
[6] 王伟彬,银建中. 含CO2/离子液体系统相行为及其在反应与分离中的应用进展[J]. 化学进展, 2008, 20(04): 441-449.
[7] 周瑛,叶丽,竹鑫平. HPLC-ICP-MS在食品中硒和砷形态分析及其生物有效性研究中的应用*[J]. 化学进展, 2007, 19(06): 982-995.
[8] 吕凤婷,高莉宁,房喻. 表面增强荧光研究进展*[J]. 化学进展, 2007, 19(0203): 256-266.
[9] 姚天明,傅成武,施宪法. 耦合液膜传输的研究进展[J]. 化学进展, 2001, 13(03): 177-.
[10] 高庆宇,蔡遵生,赵学庄. 非线性化学反应动力学*[J]. 化学进展, 1997, 9(01): 59-.