English
新闻公告
More
化学进展 2014, Vol. 26 Issue (0203): 225-233 DOI: 10.7536/PC130822 前一篇   后一篇

• 综述与评论 •

新型非TiO2金半导体光催化剂

金超1, 秦瑶*2, 杨金虎*1,2   

  1. 1. 同济大学化学系 上海 200092;
    2. 同济大学医学院 东方医院 上海 200120
  • 收稿日期:2013-08-01 修回日期:2013-09-01 出版日期:2014-02-15 发布日期:2013-12-18
  • 通讯作者: 秦瑶,e-mail:lilyqin@tongji.edu.cn;杨金虎,e-mail:yangjinhu@tongji.edu.cn E-mail:lilyqin@tongji.edu.cn;yangjinhu@tongji.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 21273161,21101117)和国家自然科学基金创新研究群体项目(No.81221001)资助

Novel Non-TiO2 Semiconductor Photocatalysts

Jin Chao1, Qin Yao*2, Yang Jinhu*1,2   

  1. 1. Department of Chemistry, Tongji University, Shanghai 200092;
    2. East Hospital, Tongji University School of Medicine, Shanghai 200120, China
  • Received:2013-08-01 Revised:2013-09-01 Online:2014-02-15 Published:2013-12-18
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (No.21273161, 21101117) and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.81221001)

本文概述了半导体光催化剂的催化原理、影响光催化效率的因素及近几年几类新型非TiO2半导体光催化剂的研究进展。重点选取一些有代表性的新型光催化剂,如Ag3PO4及其复合物、硫化物、非TiO2金属氧化物、铋族化合物及钴族化合物等,分析它们的结构组成对光催化性能的影响。最后,对目前光催化剂研究中存在的主要问题进行总结并对未来光催化剂的发展进行展望。

Photocatalysis, in which solar photons are used to drive redox reactions to produce clean energy resources or to decompose environmental pollutants, has attracted considerable attention as we are facing the increasing challenges of diminishing fossil fuels and severe environmental pollution. Significant efforts have been made to develop various photocatalysts which can fundamentally dictate the overall efficiency of the solar energy conversion system. As a typical class of semiconductor photocatalysts, TiO2 based composites have been widely investigated and well reviewed in literatures. Therefore, this review mainly gives a concise overview of several novel non-TiO2 photocatalysts with a focus on their structural architectures and components which affect the catalytic activity. The article here includes five sections. After the first introduction section, the general working principles of semiconductor photocatalysts are presented in the second section. The main factors such as the light harvesting ability, the charge separation efficiency, the structure of the catalyst and the photoelectrochemical stability influencing the overall efficiency of photocatalytic reactions are discussed in section 3. Novel photocatalysts include Ag3PO4 based composites, non-TiO2 metal oxides, sulfides, bismuth compounds and cobalt compounds are reviewed in section 4. Lastly, the fundamental challenges and perspectives of semiconductor photocatalysts are briefly brought up in section 5.

Contents
1 Introduction
2 Process and mechanism of photocatalysis
3 Factors affecting the photocatalytic efficiency
3.1 Light harvesting ability
3.2 Separation efficiency of photogenerated charges
3.3 Active specific surface area
3.4 Stability and recoverability
4 Novel photocatalysts without TiO2 involved
4.1 Ag3PO4 based photocatalysts
4.2 Metal oxides
4.3 Sulfides
4.4 Bismuth compounds
4.5 Cobalt compounds
5 Conclusion and outlook

中图分类号: 

()

[1] Addamo M, Augugliaro V, García-López E, Loddo V, Marcì G, Palmisano L. Catal. Today, 2005, 107/108: 612.
[2] 程萍(Cheng P), 顾明元(Gu M Y), 金燕苹(Jin Y P). 化学进展(Progress in Chemistry), 2005, 17(1): 8.
[3] Ozaki H, Iwamoto S, Inoue M. Catal. Lett., 2007, 113: 95.
[4] Hoffmann M R, Martin S T, Choi W, Bahnemannt D W. Chem. Rev., 1995, 95: 69.
[5] Bavykin D V, Friedrich J M, Walsh F C. Adv. Mater., 2006, 18: 2807.
[6] Torres-Martínez C L, Kho R, Mian O I, Mehra R K. J. Colloid Interface Sci., 2001, 240: 525.
[7] Makita Y, Uchiyama K, Hobo T. Bunseki Kagaku, 1996, 45: 745.
[8] Chen H W, Ku Y, Kuo Y L. Water Res., 2007, 41: 2069.
[9] Maeda K, Eguchi M, Youngblood W J, Mallouk T E. Chem. Mater., 2008, 20: 6770.
[10] Karlsson S, Boixel J, Pellegrin Y, Blart E, Becker H C, Odobel F, Hammarstrom L. J. Am. Chem. Soc., 2010, 132: 17977.
[11] Wang C, Thompson R L, Ohodnicki P, Baltrus J, Matranga C. J. Mater. Chem., 2011, 21: 13452.
[12] Yang T T, Chen W T, Hsu Y J, Wei K H, Lin T Y, Lin T W. J. Phys. Chem. C, 2010, 114: 11414.
[13] Hirakawa T, Kamat P V. J. Am. Chem. Soc., 2005, 127: 3928.
[14] Yu Z Y, Bensimon M, Sarria V, Stolitchnov I, Jardim W, Laub D, Mielczarski E, Mielczarski J, Minsker L, Kiwi J. Appl. Catal. B: Environ., 2007, 76: 185.
[15] Zhang G K, Zou X, Gong J, He F S, Zhang H, Ouyang S X, Liu H X, Zhang Q, Liu Y, Yang X, Hu X. J. Mol. Catal. A: Chem., 2006, 255: 109.
[16] Zou T, Xie C, Liu Y, Zhang S S, Zou Z J, Zhang S P. J. Alloy. Compd., 2013, 552: 504.
[17] Baker D R, Kamat P V. Adv. Funct. Mater., 2009, 19: 805.
[18] Yang Z, Zhang J, Kintner-Meyer M C W, Lu X, Choi D, Lemmon J P, Liu J. Chem. Rev., 2011, 111: 3577.
[19] Zhou H, Qu Y, Zeid T, Duan X. Energy Environ. Sci., 2012, 5: 6732.
[20] Silva C G, Jurez R, Marino T, Molinari R, Garcia H. J. Am. Chem. Soc., 2011, 133: 595.
[21] Lu C H, Qi L H, Cong H L, Wang X Y, Yang J H, Yang L L, Zhang D Y, Ma J M, Cao W X. Chem. Mater., 2005, 17: 5218.
[22] Wang S W, Yu Y, Zuo Y H, Li C Z, Yang J H, Lu C H. Nanoscale, 2012, 4: 5895.
[23] 李远志(Li Y Z). 武汉理工大学硕士论文(Master Dissertation of Wuhan University of Science and Technology), 2009.
[24] Jiang L C, Zhang W D, Yu Y X, Wang J. Electrochem. Commun., 2011, 13: 627.
[25] Ma W F, Zhang Y, Li L L, You L J, Zhang P, Zhang Y T, Li J M, Yu M, Guo J, Lu H J, Wang C C. ACS Nano, 2012, 6: 3179.
[26] Yi Z G, Ye J H, Kikugawa N, Ouyang S X, Stuart -Williams H, Yang H, Cao J Y, Luo W J, Li Z S, Liu Y, Withers R L. Nature Mater., 2010, 9: 559.
[27] Bi Y P, Ouyang S X, Umezawa N, Cao J Y, Ye J H. J. Am. Chem. Soc., 2011, 133: 6490.
[28] Bi Y P, Ouyang S X, Cao J Y, Ye J H. Phys. Chem. Chem. Phys., 2011, 13: 10071.
[29] Bi Y P, Hu H Y, Ouyang S X, Jiao Z B, Lu G X, Ye J H. Chem. Eur. J., 2012, 18: 14272.
[30] Bi Y P, Hu H Y, Ouyang S X, Jiao Z B, Lu G X, Ye J H. J. Mater. Chem., 2012, 22: 14847.
[31] Bi Y P, Hu H Y, Jiao Z B, Yu H C, Lu G X, Ye J H. Phys. Chem. Chem. Phys., 2012, 14: 14486.
[32] Liu I K, Luo C X, Wang J D, Yang X Y, Zhong X H. CrystEngComm., 2012, 14: 8714.
[33] Liang Q H, Ma W J, Shi Y, Li Z, Yang X M. CrystEngComm., 2012, 14: 2966.
[34] Huang L J, Yin S, Guo C S, Huang Y F, Wang M, Dong Q, Li H H, Kimura T, Tanaka M, Sato T. Funct. Mater. Lett., 2012, 5: 12600051.
[35] Li P, Wei Z, Wu T, Peng Q, Li Y D. J. Am. Chem. Soc., 2011, 133: 5660.
[36] Lin Y G, Hsu Y K, Chen Y C, Chen L C, Chen S Y, Chen K H. Nanoscale, 2012, 4: 6515.
[37] Liu Y X, Shi J X, Peng Q, Li Y D. Chem. Eur. J., 2013, 19: 4319.
[38] Ohno T, Bai L, Hisatomi T, Maeda K, Domen K. J. Am. Chem. Soc., 2012, 134: 8254.
[39] Pan J, Li J T, Yan Z L, Zhou B H, Wu H S, Xiong X. Nanoscale, 2013, 5: 3022.
[40] Boppana V B R, Yusuf S, Hutchings G S, Jiao F. Adv. Funct. Mater., 2013, 23: 878.
[41] Kang S Z, Chen L L, Li X Q, Mu J. Appl. Surf. Sci., 2012, 258: 6029.
[42] Fu X L, Tang W M, Ji L, Chen S F. Chem. Eng. J., 2012, 180: 170.
[43] Zhou B, Liu Z G, Wang H X. Yang Y Q, Su W H. Catal. Lett., 2009, 132: 75.
[44] Hwang D W, Kim J, Park T J, Lee J S. Catal. Lett., 2002, 80: 53.
[45] Xi G C, Yue B, Cao J Y, Ye J H. Chem. Eur. J., 2011, 17: 5145.
[46] Muruganandham M, Kusumoto Y. J. Phys. Chem. C, 2009, 113: 16144.
[47] Hu Y, Qian H H, Liu Y, Du G H, Zhang F M, Wang L B, Hu X. CrystEngComm, 2011, 13: 3438.
[48] Wang Y B, Wang Y S, Xu R. J. Phys. Chem. C, 2013, 117: 783.
[49] De G C, Roy A M, Bhattacharya S S. Int. J. Hydrogen Energ., 1996, 21: 19.
[50] Jing D W, Guo L J. J. Phys. Chem. B, 2006, 110: 11139.
[51] Liu F Z, Shao X, Wang J Q. Yang S R, Li H Y, Meng X H, Liu X H, Wang M. J. Alloy. Compd., 2013, 551: 327.
[52] Zhang Y H, Zhang N, Tang Z R, Xu Y J. ACS Nano, 2012, 6: 9777.
[53] Lei Z B, You W S, Liu M Y, Zhou G H, Takata T, Hara M, Domen K, Li C. Chem. Commun., 2003, 2142.
[54] Kubacka A, Fernández-García M, Colón G. Chem. Rev., 2012, 112: 1555.
[55] 李二军(Li E J), 陈浪(Chen L), 章强(Zhang Q), 李文华(Li W H), 尹双凤(Yin S F). 化学进展(Progress in Chemistry), 2010, 22(12): 2282.
[56] Zhang K L, Liu C M, Huang F Q, Zheng C, Wang W D. Appl. Catal. B: Environ., 2006, 68: 125.
[57] Wang W D, Huang F Q, Lin X P, Yang J H. Catal. Commun., 2008, 9: 8.
[58] Lin X P, Xing J C, Wang W D, Shan Z C, Xu F F, Huang F Q. J. Phys. Chem. C, 2007, 111: 18288.
[59] Lin X P, Huang T, Huang F Q, Wang W D, Shi J L. J. Mater. Chem., 2007, 17: 2145.
[60] Zhao W, Liu Y F, Liu J J, Chen P, Chen I W, Huang F Q, Lin J H. J. Mater. Chem. A, 2013, 1: 7942.
[61] Cheng H F, Huang B B, Dai Y, Qin X Y, Zhang X Y, Wang Z Y, Jiang M H. J. Solid State Chem., 2009, 182: 2274.
[62] Zhang H J, Chen G, Li X. Solid State Ionics, 2009, 180: 1599.
[63] Zhang Z J, Wang W Z, Shang M. Yin W Z. Catal. Commun., 2010, 11: 982.
[64] Lin X P, Huang F Q, Wang W D, Shan Z C, Shi J L. Dyes Pigments, 2008, 78: 39.
[65] Zhang Y H, Zhang N, Tang Z R, Xu Y J. Chem. Sci., 2013, 4: 1820.
[66] Chang X F, Huang J, Cheng C, Sui Q, Sha W, Ji G B, Deng S B, Yu G. Catal. Commun., 2010, 11, 5: 460.
[67] Chai S Y, Kim Y J, Jung M H, Chakraborty A K, Jung D, Lee W I. J. Catal., 2009, 262: 144.
[68] Zhou Z J, Long M C, Cai W M, Cai J. J. Mol. Catal. A: Chem., 2012, 353/354: 22.
[69] Liu W, Chen S F, Zhang H Y, Yu X L. J. Exp. Nanosci., 2011, 6: 102.
[70] Hou Y, Zuo F, Dagg A, Feng P Y. Nano Lett., 2012, 12: 6464.
[71] Kanan M W, Nocera D G. Science, 2008, 321: 1072.
[72] Kanan M W, Surendranath Y, Nocera D G. Chem. Soc. Rev., 2009, 38: 109.
[73] McAlpin J G, Surendranath Y, Dinca M, Stich T A, Stoian S A, Casey W H, Nocera D G, Britt R D. J. Am. Chem. Soc., 2010, 132: 6882.
[74] Kanan M W, Yano J, Surendranath Y, Dinca M, Yachandra V K, Nocera D G. J. Am. Chem. Soc., 2010, 132: 13692.
[75] Surendranath Y, Kanan M W, Nocera D G.. J. Am. Chem. Soc., 2010, 132: 16501.
[76] Walter M G, Warren E L, McKone J R, Boettcher S W, Mi Q, Santori E A, Lewis N S. Chem. Rev., 2010, 110: 6446.
[77] Zhang F, Yamakata A, Maeda K, Moriya Y, Takata T, Kubota J, Teshima K, Oishi S, Domen K. J. Am. Chem. Soc., 2012, 134: 8348.
[78] Zhao Z G, Zhang J, Yuan Y Y, Lv H, Tian Y Y, Wu D, Li Q W. Sci. Rep. 2013, 3: 2263. DOI: 10.1038/srep02263

[1] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[2] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[6] 杨国栋, 苑高千, 张竞哲, 吴金波, 李发亮, 张海军. 多孔电磁波吸收材料[J]. 化学进展, 2023, 35(3): 445-457.
[7] 蒋昊洋, 熊丰, 覃木林, 高嵩, 何刘如懿, 邹如强. 用于电热转化、存储与利用的导电相变材料[J]. 化学进展, 2023, 35(3): 360-374.
[8] 刘晓珺, 秦朗, 俞燕蕾. 胆甾相液晶螺旋方向的光调控[J]. 化学进展, 2023, 35(2): 247-262.
[9] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[10] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[11] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[12] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[13] 顾顺心, 姜琴, 施鹏飞. 发光铱(Ⅲ)配合物抗肿瘤活性研究及应用[J]. 化学进展, 2022, 34(9): 1957-1971.
[14] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[15] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
阅读次数
全文


摘要

新型非TiO2金半导体光催化剂