English
新闻公告
More
化学进展 2014, Vol. 26 Issue (04): 502-511 DOI: 10.7536/PC130819 前一篇   后一篇

• 综述与评论 •

新型催化剂载体碳化硅的研究现状

王周君1,2, 傅强2, 包信和*2   

  1. 1. 北京化工大学化学工程学院 有机无机复合材料国家重点实验室 北京 100029;
    2. 中国科学院大连化学物理研究所 催化基础国家重点实验室 大连 116023
  • 收稿日期:2013-08-01 修回日期:2013-11-01 出版日期:2014-04-15 发布日期:2014-01-20
  • 通讯作者: 包信和,e-mail:xhbao@dicp.ac.cn E-mail:xhbao@dicp.ac.cn
  • 基金资助:

    国家自然科学基金项目(No.21033009,21222305,21073183)、国家重大科学研究计划项目(No.2011CB932700)、国家重点基础研究发展计划(973)项目(No.2011CBA00503)和中国博士后科学基金项目(No.20110491548)资助

Silicon Carbide as a Novel Support for Heterogeneous Catalysis

Wang Zhoujun1,2, Fu Qiang2, Bao Xinhe*2   

  1. 1. College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
    2. Dalian Institute of Chemical Physics, the Chinese Academy of Sciences, Dalian 116023, China
  • Received:2013-08-01 Revised:2013-11-01 Online:2014-04-15 Published:2014-01-20
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No.21033009, 21222305, 21073183), National Key Scientific Research Projects (No.2011CB932700), National Basic Research Development Program of China (No.2011CBA00503) and National Science Foundation for Postdoctoral Scientists of China (No.20110491548)

碳化硅(SiC)具有较好的导热性,较强的抗氧化性及很高的机械强度,作为新型催化剂载体在强放热、高腐蚀性、液相催化等反应中有很好的应用前景,近年来受到广泛关注。目前关于SiC载体的研究主要集中在三个方面:(1)高比表面积多孔SiC材料的制备;(2)基于现有商业化低比表面积SiC材料的表面碳化;(3)对SiC载体进行杂原子掺杂等表面功能化。本文中,我们主要对以上三个方面的研究现状做简要综述。重点介绍SiC的结构与物理化学性质,SiC作为新型载体在非均相催化反应中的应用以及基于6H-SiC(0001)衬底的表面化学研究。

In recent years, increasing attention has been attracted for silicon carbide (SiC) in the field of catalysis as a potential catalyst support owing to its excellent thermal conductivity, relative chemical inertness, and high mechanical strength. SiC-supported catalysts are reported to exhibit superior catalytic performance in strong exothermal, severely corrosive and liquid-phase reactions. Nowadays, the researches towards SiC as a catalyst support focus on the following issues: the synthesis of high surface area SiC, the formation of carbide-derived carbon (CDC) on the low surface area SiC, and the surface functionalization of SiC. In this review, we address all of the above-mentioned issues. This article is arranged in three sections ranging from the experimental results over technical SiC-supported catalysts to surface chemistry studies on SiC single crystals. The first section introduces the structure and properties of SiC; the second section covers SiC as a novel support in heterogeneous catalysis; and the surface science studies on the 6H-SiC(0001) substrate are highlighted in the last section.

Contents
1 Introduction
2 Silicon carbide: structure and properties
2.1 SiC polytypes
2.2 Physical and chemical properties
3 SiC as a novel support in heterogeneous catalysis
3.1 Synthesis of high surface area SiC and its application in heterogeneous catalysis
3.2 Formation of carbide-derived carbon (CDC) on low surface area SiC and its application in heterogeneous catalysis
4 Surface studies on the 6H-SiC(0001) substrate
4.1 Surface reconstruction in ultrahigh vacuum (UHV)
4.2 Metal-support interactions on carbon nanomesh surface
4.3 N functionalization on graphene overlayer
5 Conclusions and outlook

中图分类号: 

()

[1] Ostwald W. Zeitschrift für Physikalische Chemie, 1894, 15: 705.
[2] Ertl G, Knözinger H, Weitkamp J. Handbook of heterogeneous catalysis. Weinheim: VCH, 1997.
[3] Anastas P T, Warner J C. Green chemistry: Theory and practice. Oxford: Oxford Science Publications, 1998.
[4] Somorjai G A. Introduction to surface chemistry and catalysis. New York: Wiley, 1994.
[5] Ertl G. Angew. Chem. Int. Ed., 2008, 47: 3524.
[6] Wang Z J, Yan Z, Liu C J, Goodman D W. ChemCatChem, 2011, 3: 551.
[7] Jacobsen C J H. J. Catal., 2001, 200: 1.
[8] Xu B Q, Wei J M, Wang H Y, Sun K Q, Zhu Q M. Catal. Today, 2001, 68: 217.
[9] Zhou Y, Li X, Pan X, Bao X. J. Mater. Chem., 2012, 22: 14155.
[10] Li X, Pan X, Zhou Y, Bao X. Carbon, 2013, 57: 34.
[11] Li X, Wang F, Pan X, Bao X. Chin. J. Catal., 2013, 34: 257.
[12] Wang Z, Fu Q, Bao X. Langmuir, 2010, 26: 7227.
[13] Wang Z, Fu Q, Xu X, Zhang H, Li W, Gao M, Tan D, Bao X. Chem. Phys. Lett., 2011, 503: 247.
[14] 王珍(Wang Z). 中国科学院大连化学物理研究所博士论文(Doctoral Dissertation of Dalian Institute of Chemical Physics, Chinese Academy of Sciences), 2011.
[15] Wang Z J, Fu Q, Wang Z, Bao X. Surf. Sci., 2012, 606: 1313.
[16] Wang Z J, Wei M, Jin L, Ning Y, Yu L, Fu Q, Bao X. Nano Res., 2013, 6: 399.
[17] Harris G L. Properties of silicon carbide. (Ed Harris G L). London: INSPEC, 1995.
[18] Ayalew T. Doctoral Dissertation of Vienna University of Technology, 2004.
[19] Ledoux M J, Pham-Huu C. Cattech, 2001, 5: 226.
[20] Keller N, Vieira R, Nhut J M, Pham-Huu C, Ledoux M J. J. Brazil. Chem. Soc., 2005, 16: 202.
[21] Ledoux M J, Crouzet C, Pham-Huu C, Turines V, Kourtakis K, Mills P L, Lerou J J. J. Catal., 2001, 203: 495.
[22] Nhut J M, Pesant L, Keller N, Pham-Huu C, Ledoux M J. Top. Catal., 2004, 30/31: 353.
[23] Delgallo P, Pham-Huu C, Bouchy C, Estournes C, Ledoux M J. Appl. Catal. A, 1997, 156: 131.
[24] Harlin M E, Krause A O I, Heinrich B, Pharm-Huu C, Ledoux M J. Appl. Catal. A, 1999, 185: 311.
[25] 郭向云(Guo X Y), 靳国强(Jin G Q), 王英勇(Wang Y Y). 物理化学学报(Acta Physico-Chimica Sinica), 2010, 26: 1143.
[26] Guo X Y, Jin G Q. J. Mater. Sci., 2005, 40: 1301.
[27] Wang Q, Jin G Q, Wang D H, Guo X Y. Mater. Sci. Eng. A, 2007, 459: 1.
[28] Wang Q, Wang D H, Jin G Q, Guo X Y. J. Inorg. Mater., 2008, 23: 602.
[29] Wang Q, Sun W Z, Jin G Q, Wang Y Y, Guo X Y. Appl. Catal. B, 2008, 79: 307.
[30] Guo X N, Shang R J, Wang D H, Jin G Q, Guo X Y, Tu K N. Nanoscale Res. Lett., 2010, 5: 332.
[31] Gogotsi Y G, Jeon I D, McNallan M J. J. Mater. Chem., 1997, 7: 1841.
[32] Gogotsi Y, Welz S, Ersoy D A, McNallan M J. Nature, 2001, 411: 283.
[33] Welz S, Gogotsi Y, McNallan M J. J. Appl. Phys., 2003, 93: 4207.
[34] Welz S, McNallan M J, Gogotsi Y. J. Mater. Process Technol., 2006, 179: 11.
[35] Cambaz Z G, Yushin G N, Gogotsi Y, Vyshnyakova K L, Pereselentseva L N. J. Am. Ceram. Soc., 2006, 89: 509.
[36] Choi H J, Bae H T, McNallan M J, Sohn Y H, Lim D S. Surf. Coat. Technol., 2009, 204: 1018.
[37] Kockrick E, Borchardt L, Schrage C, Gaudillere C, Ziegler C, Freudenberg T, Farrusseng D, Eychmüller A, Kaskel S. Chem. Mater., 2011, 23: 57.
[38] Simon L, Bischoff J L, Kubler L. Phys. Rev. B: Condens. Matter, 1999, 60: 11653.
[39] Martensson P, Owman F, Johansson L I. Phys. Status Solidi B, 1997, 202: 501.
[40] Riedl C, Coletti C, Iwasaki T, Zakharov A A, Starke U. Phys. Rev. Lett., 2009, 103: 246804.
[41] Chen W, Xu H, Liu L, Gao X, Qi D, Peng G, Tan S C, Feng Y, Loh K P, Wee A T S. Surf. Sci., 2005, 596: 176.
[42] Riedl C, Starke U, Bernhardt J, Franke M, Heinz K. Phys. Rev. B, 2007, 76: 245406.
[43] Chen W, Loh K P, Xu H, Wee A T S. Appl. Phys. Lett., 2004, 84: 281.
[44] Chen W, Loh K P, Xu H, Wee A T S. Langmuir, 2004, 20: 10779.
[45] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306: 666.
[46] Allen M J, Tung V V, Kaner R B. Chem. Rev., 2010, 110: 132.
[47] Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A. Science, 2006, 312: 1191.
[48] Varchon F, Feng R, Hass J, Li X, Nguyen B N, Naud C, Mallet P, Veuillen J Y, Berger C, Conrad E H, Magaud L. Phys. Rev. Lett., 2007, 99: 126805.
[49] Wong S L, Huang H, Wang Y, Cao L, Qi D, Santoso I, Chen W, Wee A T S. ACS Nano, 2011, 5: 7662.
[50] Virojanadara C, Watcharinyanon S, Zakharov A A, Johansson L I. Phys. Rev. B, 2010, 82: 205402.
[51] Gao T, Gao Y, Chang C, Chen Y, Liu M, Xie S, He K, Ma X, Zhang Y, Liu Z. ACS Nano, 2012, 6: 6562.
[52] Liu H, Liu Y, Zhu D. J. Mater. Chem., 2011, 21: 3335.
[53] Wang X, Li X, Zhang L, Yoon Y, Weber P K, Wang H, Guo J, Dai H. Science, 2009, 324: 768.
[54] Cervantes-Sodi F, Csanyi G, Piscanec S, Ferrari A C. Phys. Rev. B, 2008, 77: 165427.
[55] Joucken F, Tison Y, Lagoute J, Dumont J, Cabosart D, Zheng B, Repain V, Chacon C, Girard Y, Botello-Méndez A R, Rousset S, Sporken R, Charlier J C, Henrard L. Phys. Rev. B, 2012, 85: 161408 (R).
[56] Rhim S H, Qi Y, Liu Y, Weinert M, Li L. Appl. Phys. Lett., 2012, 100: 233119.
[57] Velez-Fort E, Mathieu C, Pallecchi E, Pigneur M, Silly M G, Belkhou R, Marangolo M, Shukla A, Sirotti F, Ouerghi A. ACS Nano, 2012, 6: 10893.

[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[3] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[4] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[5] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[6] 李豹, 吴立新. 液态凝聚态调控的分散质组装及功能[J]. 化学进展, 2022, 34(7): 1600-1609.
[7] 张德善, 佟振合, 吴骊珠. 人工光合作用[J]. 化学进展, 2022, 34(7): 1590-1599.
[8] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[9] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[10] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[11] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[12] 陈晓峰, 王开元, 梁芳铭, 姜睿祺, 孙进. 外泌体递药系统及其在肿瘤治疗中的应用[J]. 化学进展, 2022, 34(4): 773-786.
[13] 张辉, 熊玮, 卢建臣, 蔡金明. 超高真空下纳米石墨烯磁性及调控[J]. 化学进展, 2022, 34(3): 557-567.
[14] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[15] 杨林颜, 郭宇鹏, 李正甲, 岑洁, 姚楠, 李小年. 钴基费托合成催化剂的表界面性质调控[J]. 化学进展, 2022, 34(10): 2254-2266.