English
新闻公告
More
化学进展 2014, Vol. 26 Issue (0203): 385-393 DOI: 10.7536/PC130812 前一篇   后一篇

• 综述与评论 •

多糖多肽水凝胶的增强研究

宋利锋, 赵瑾*, 袁晓燕   

  1. 天津大学材料科学与工程学院 天津市材料复合与功能化重点实验室 天津 300072
  • 收稿日期:2013-08-01 修回日期:2013-09-01 出版日期:2014-02-15 发布日期:2013-12-18
  • 通讯作者: 赵瑾,e-mail:zhaojin@tju.edu.cn E-mail:zhaojin@tju.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.51103095)资助

Strengthening of Hydrogels Based on Polysaccharide and Polypeptide

Song Lifeng, Zhao Jin*, Yuan Xiaoyan   

  1. School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
  • Received:2013-08-01 Revised:2013-09-01 Online:2014-02-15 Published:2013-12-18
  • Supported by:

    The work was supported by the National Natural Science Foundation for China (No. 51103095)

多糖多肽类天然水凝胶由于原料来源丰富、可生物降解以及良好的生物相容性,在生物医药领域具有巨大的应用潜力,然而其应用常常受到脆性高、力学强度差等缺陷的限制。本文综述了多糖多肽水凝胶的增强研究进展,重点探讨了共混增强、特殊拓扑结构增强、结晶增强和模仿合成材料凝胶增强等4种主要方法及其增强原理,并介绍了当前多糖多肽类水凝胶增强研究中取得的主要成果、面临的问题及其解决设想。

Hydrogels based on polysaccharide and polypeptide have been utilized in a wide range of biomedical applications because of the rich resources, good biocompatibility and biodegradability. However, their wide applications are always restricted by the relatively poor mechanical strength. This review aims to give an overview of strengthening of hydrogels based on these materials, and highlights four kinds of ways: strengthening via blending; strengthening via special topological structure; strengthening via crystallization; and strengthening via imitating robust hydrogels based on synthetic materials, in terms of their enhanced mechanical properties and corresponding strengthening mechanisms. Finally, we describe the main current achievements in the study of strengthening of hydrogels based on polysaccharide and polypeptide, and also provide some suggestions for further work particularly with regard to some unanswered questions and possible avenues for further enhancement of gel mechanical properties.

Contents
1 Introduction
2 Strengthening via blending
2.1 Blending via hydrogen bond
2.2 Blending via electrostatic interaction
3 Designing special topological structures
3.1 Dendritic topology structure
3.2 Star topology structure
4 Strengthening via crystallization
5 Strengthening via imitating robust hydrogels based on synthetic materials
5.1 Nanocomposite hydrogels
5.2 Double-network hydrogels
6 Conclusion and outlook

中图分类号: 

()

[1] Peppas N A, Bures P, Leobandung W, Ichikawa H. Eur. J. Pharm. Biopharm., 2000, 50(1): 27.
[2] Van V S, Dubruel P, Schacht E. Biomacromolecules, 2011, 12(5): 1387.
[3] Balakrishnan B, Banerjee R. Chem. Rev., 2011, 111(8): 4453.
[4] Karino T, Shibayama M, Ito K. Physica B, 2006, 385/386: 692.
[5] Okumura Y, Ito K. Adv. Mater., 2001, 13(7): 485.
[6] Haraguchi K, Uyama K, Tanimoto H. Macromol. Rapid Commun., 2011, 32(16): 1253.
[7] Haraguchi K, Takehisa T. Adv. Mater., 2002, 14(16): 1120.
[8] Haraguchi K, Farnworth R, Ohbayashi A, Takehisa T. Macromolecules, 2003, 15(36): 5732.
[9] Liu R Q, Liang S M, Tang X Z, Yan D, Li X F, Yu Z Z. J. Mater. Chem., 2012, 22(28): 14160.
[10] Haraguchi K, Takehisa T, Fan S, Macromolecules, 2002, 35(27): 10162.
[11] Sakai T, Matsunaga T, Yamamoto Y, Ito C, Yoshida R, Suzuki S, Sasaki N, Shibayama M, Chung U. Macromolecules, 2008, 41: 5379.
[12] Shibayama M. Soft Matter, 2012, 8(31): 8030.
[13] Matsunaga T, Sakai T, Akagi Y, Chung U, Shibayama M. Macromolecules, 2009, 42(4): 1344.
[14] Kurakazu M, Katashima T, Chijiishi M, Nishi K, Akagi Y, Matsunaga T, Shibayama M, Chung U, Sakai T. Macromolecules, 2010, 43: 3935.
[15] Li X, Tsutsui Y, Matsunaga T, Shibayama M, Chung U, Sakai T. Macromolecules, 2011, 44(9): 3567.
[16] Gong J P, Katsuyama Y, Kurokawa T, Osada Y. Adv. Mater., 2003, 15(14): 1155.
[17] Yasuda K, Gong J P, Katsuyama Y, Nakayama A, Tanabe Y, Kondo E, Ueno M, Osada Y. Biomaterials, 2005, 26(21): 4468.
[18] Gong J P. Soft Matter, 2010, 6(12): 2583.
[19] Tsukeshiba H, Huang Mei, Na Y H, Kurokawa T, Kuwabara R, Tanaka Y, Furukawa H, Osada Y, Gong J P. J. Phys. Chem. B, 2005, 109(34): 16304.
[20] Na Y H, Kurokawa T, Katsuyama Y, Tsukeshiba H, Gong J P, Osada Y, Okabe S, Karino T, Shibayama M. Macromolecules, 2004, 37(14): 5370.
[21] Tanaka Y, Gong J P, Osada Y. Prog. Polym. Sci., 2005, 30(1): 1.
[22] Chen Y M, Dong K, Liu Z Q, Xu F. Sci. China Tech. Sci., 2012, 55(8): 2241.
[23] Hu J, Kurokawa T, Nakajima T, Sun T L, Suekama T, Wu Z L, Liang S M, Gong J P. Macromolecules, 2012, 45(23): 9445.
[24] Tuncaboylu D C, Sari M, Oppermann W, Okay O. Macromolecules, 2011, 44(12): 4997.
[25] Haque M A, Kurokawa T, Kamita G, Gong J P. Macromolecules, 2011, 44(22): 8916.
[26] Tuncaboylu D C, Argun A, Sahin M, Sari M, Okay O. Polymer, 2012, 53(24): 5513.
[27] Haque M A, Kamita G, Kurokawa T, Tsujii K, Gong J P. Adv. Mater., 2010, 22(45): 5110.
[28] Henderson K J, Zhou T C, Otim K J, Shull K R. Macromolecules, 2010, 43(14): 6193.
[29] Sun J Y, Zhao X H, Illeperuma W R K, Chaudhuri O, Oh K H, Mooney D J, Vlassak J J, Suo Z G. Nature, 2012, 489(7417): 133.
[30] Tang Q W, Sun X M, Li Q H, Wu J H, Lin J M. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2009, 346(1/3): 91.
[31] Lin W C, Fan W, Marcellan A, Hourdet D, Creton C. Macromolecules, 2010, 43(5): 2554.
[32] Petit L, Bouteiller L, Brulet A, Lafuma F, Hourdet D. Langmuir, 2007, 23(1): 147.
[33] Lin W C, Yu D G, Yang M C. Colloids and Surfaces B: Biointerfaces, 2006, 47(1): 43.
[34] Gupta B, Agarwa R, Alam M S. J. Appl. Polym. Sci., 2013, 127(2): 1301.
[35] Chang K Y, Cheng L W, Ho G H, Huang Y P, Lee Y D. Acta Biomater., 2009, 5: 1937.
[36] 许俊(Xu J), 江学良(Jiang X L), 孙康(Sun K). 功能高分子学报(Journal of Functional Polymers). 2007, 19/20(4): 369.
[37] Artzi N, Shazly T, Crespo C, Ramos A B, Chenault H K, Edelman E R. Macromol. Biosci., 2009, 9: 754.
[38] Ma K, Titan A L, Stafford M, Zheng C H, Levenston M E. Acta Biomater., 2012, 8(10): 3754.
[39] Yan S F, Zhang K X, Liu Z W, Zhang X, Gan L, Cao B, Chen X S, Cui L, Yin J B. J. Mater. Chem. B, 2013, 1(11): 1541.
[40] Oliva N, Shitreet S, Abraham E, Stanley B, Edelman E R. Artzi N. Langmuir, 2012, 28: 15402.
[41] Zhang H B, Patel A, Gaharwar A K, Mihaila S M, Iviglia G, Mukundan S, Bae H, Yang H, Khademhosseini A. Biomacromolecules, 2013, 14: 1299.
[42] Al-Jamal K T, Al-Jamal W T, Wang J T W, Rubio N, Buddle J, Gathercole D, Zloh M, Kostarelos K. ACS Nano, 2013, 7(3): 1905.
[43] Al-Jamal K T, Al-Jamal W T, Akerman S, Podesta J E, Yilmazer A, Turton J A, Bianco A, Vargesson N, Kanthou C, Florence A T, Tozer G M, Kostarelos K. Proc. Natl. Acad. Sci. U. S. A., 2009, 107(9): 3966.
[44] Crespo L, Sanclimens G, Pons M, Giralt E, Royo M, Albericio F. Chem. Rev., 2005, 105(5): 1663.
[45] Palui G, Simon F X, Schmutz M, Mesini P J, Banerjee A. Tetrahedron, 2008, 64 (1): 175.
[46] Ohsaki M, Okuda T, Wada A, Hirayama T, Niidome T, Aoyagi H. Bioconjugate Chem., 2002, 13(3): 510.
[47] Wathier M, Jung P J, Carnahan M A, Kim T, Grinstaff M W. J. Am. Chem. Soc., 2004, 126(40): 12744.
[48] Wathier M, Johnson C S, Kim T, Grinstaff M W. Bioconjugate Chem., 2006, 17(4): 873.
[49] Oelker A M, Berlin J A, Wathier M, Grinstaff M W. Biomacromolecules, 2011, 12(5): 1658.
[50] Liu D L, Chang X, Dong C M. Chem. Commun., 2013, 49(12): 1229.
[51] Chung H J, Park T G. Nano Today, 2009, 4 (5): 429.
[52] Gungormusa M, Brancob M, Fonga H, Schneiderb J P, Tamerlera C, Sarikaya M. Biomaterials, 2010, 31(28): 7266.
[53] Thornton P D, Billah S M R, Cameron Neil R. Macromol. Rapid Commun., 2013, 34(3): 257.
[54] Choi Y Y, Jang J H, Park M H, Choi B G, Chi B, Jeong B. J. Mater. Chem., 2010, 20: 3416.
[55] Sulistio A, Blencowe A, Widjaya A, Zhang X Q, Qiao G G. Polym. Chem., 2012, 3(1): 224.
[56] Sulistio A, Gurr P A, Blencowe A, Qiao G G. Aust. J. Chem. 2012, 65(8): 978.
[57] Sulistio A, Widjaya A, Blencowe A, Zhang X Q, Qiao G G. Chem. Commun., 2011, 47(4): 1151.
[58] Sulistio A, Lowenthal J, Blencowe A, Bongiovanni M N, Ong L, Gras S L, Zhang X Q, Qiao G G. Biomacromolecules, 2011, 12(10): 3469.
[59] Abe K, Yano H. Carbohyd. Polym., 2011, 85(4): 733.
[60] Abe K, Yano H. Cellulose, 2012, 19(6): 1907.
[61] Nakano T. Cellulose, 2010, 17(4): 711.
[62] Nakagaito A N, Yano H. Cellulose, 2008, 15(2): 323.
[63] Lee J I, Kim H S, Yoo H S. Int. J. Pharm., 2009, 373(1/2): 93.
[64] Bako J, Vecsernyes M, Ujhelyi Z, Kovacsne I B, Borbro I, Biro T, Borbely J, Hegedus C. J. Mater. Sci.: Mater. Med., 2013, 24(3): 659.
[65] Teramoto N, Hayashi A, Yamanaka K, Sakiyama A, Nakano A, Shibata M. Materials. 2012, 5(12): 2573.
[66] Zhong C, Wu J, Reinhart-King C A, Chu C C. Acta Biomater., 2010, 6(10): 3908.
[67] Rickett T A, Amoozgar Z, Tuchek C A, Park J, Yeo Y, Shi R. Biomacromolecules, 2011, 12(1): 57.
[68] Ishihara M, Obara K, Nakamura S, Fujita M, MasuokaK, Kanatani Y, Takase B, Hattori H, Morimoto Y, Ishihara M, Maehara T, Kikuchi M. J. Artif. Organs, 2006, 9(1): 8.
[69] Chou, A I, Akintoye S O, Nicoll S B. Osteoarthr. Cartil., 2009, 17(10): 1377.
[70] Nakano A, Teramoto N, Chen G P, Miura Y, Shibata M. J. Appl. Polym. Sci., 2010, 118(4): 2284.
[71] Weng L H, Gouldstone A, Wu Y H, Chen W L. Biomaterials, 2008, 29(14): 2153.
[72] Naficy S, Brown H R, Razal J M, Spinks G M, Whitten P G. Aust. J. Chem., 2011, 64(8): 1007.

[1] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[2] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[3] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[4] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[5] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[6] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[7] 宫悦, 程一竹, 胡银春. 高分子导电水凝胶的制备及在柔性可穿戴电子设备中的应用[J]. 化学进展, 2022, 34(3): 616-629.
[8] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.
[9] 赵静, 王子娅, 莫黎昕, 孟祥有, 李路海, 彭争春. 微结构化柔性压力传感器的性能增强机制、实现方法与应用优势[J]. 化学进展, 2022, 34(10): 2202-2221.
[10] 陈雅琼, 宋洪东, 吴懋, 陆扬, 管骁. 蛋白质-多糖复合体系在活性物质传递中的应用[J]. 化学进展, 2022, 34(10): 2267-2282.
[11] 侯慧鹏, 梁阿新, 汤波, 刘宗坤, 罗爱芹. 光子晶体生化传感器的构建及应用[J]. 化学进展, 2021, 33(7): 1126-1137.
[12] 李立清, 吴盼旺, 马杰. 双网络凝胶吸附剂的构建及其去除水中污染物的应用[J]. 化学进展, 2021, 33(6): 1010-1025.
[13] 杨宇州, 李政, 黄艳凤, 巩继贤, 乔长晟, 张健飞. MOF基水凝胶材料的制备及其应用[J]. 化学进展, 2021, 33(5): 726-739.
[14] 林建云, 罗时荷, 杨崇岭, 肖颖, 杨丽庭, 汪朝阳. 生物基高分子型止血材料和伤口敷料[J]. 化学进展, 2021, 33(4): 581-595.
[15] 陈怡峰, 王聪, 任科峰, 计剑. 生物医用高通量研究中的微液滴阵列[J]. 化学进展, 2021, 33(4): 543-554.
阅读次数
全文


摘要

多糖多肽水凝胶的增强研究