English
新闻公告
More
化学进展 2014, Vol. 26 Issue (0203): 234-247 DOI: 10.7536/PC130810 前一篇   后一篇

• 综述与评论 •

基于对硝基苯酚还原模型反应的纳米金催化材料

王珍珍, 翟尚儒*, 翟滨, 肖作毅, 安庆大*   

  1. 大连工业大学 轻工与化学工程学院 大连 116034
  • 收稿日期:2013-08-01 修回日期:2013-10-01 出版日期:2014-02-15 发布日期:2013-12-18
  • 通讯作者: 翟尚儒,e-mail:zhaisr@dlpu.edu.cn;安庆大,e-mail:anqingda@dlpu.edu.cn E-mail:zhaisr@dlpu.edu.cn;anqingda@dlpu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.21243013)、辽宁省自然科学基金项目(No.201202014)和吉林大学无机合成与制备化学国家重点实验室开放基金(2013-07)资助

Preparation and Catalytic Properties of Nano-Au Catalytic Materials Based on the Reduction of 4-Nitrophenol

Wang Zhenzhen, Zhai Shangru*, Zhai Bin, Xiao Zuoyi, An Qingda*   

  1. Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
  • Received:2013-08-01 Revised:2013-10-01 Online:2014-02-15 Published:2013-12-18
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (No.21243013),the Natural Science Foundation of Liaoning Province, China (No.201202014) and the Opening Foundation of State Key Laboratory of Inorganic Synthesis and Preparative Chemistry of Jilin University (2013-07)

硝基苯酚是工业和农业废水中常见的有机污染物之一。近年来,由于纳米金催化材料的优异催化性能,纳米金催化材料日益成为催化还原对硝基苯酚的一种高效、快速和环境友好的催化材料;合成高度分散、尺寸均一、稳定、易分离及可重复使用的纳米金催化材料是该领域的研究重点。本文以纳米金催化材料的整体结构为主线,归纳了纳米金催化材料的最新研究进展;重点讨论了纳米金催化材料的制备手段及其催化活性、稳定性、可回收性和可重复使用性;并对纳米金催化材料的发展方向和今后需解决的关键问题进行了展望。

Nitrophenols are one of the most common organic pollutants in industrial and agricultural wastewater. In recent years, due to the excellent catalytic properties of nano-Au catalytic materials, as highly efficient, fast and eco-friendly catalysts, nano-Au catalytic materials have been widely applied to the reduction of 4-nitrophenol. Correspondingly, synthesis of highly dispersed, size controllable, long-term and recycleable nano-Au catalytic materials is the main stream of this field. Based on the overall structure of the nano-Au catalytic materials, this review summarizes the latest progress on this direction, especially for the preparative methods, catalytic performance, stability, recyclability and reusability. Finally, the remaining problems and the future developing prospects are also proposed.

Contents
1 Introduction
2 Nano-Au catalyst and its catalytic performance
2.1 Polymer-based elastic nanocatalysts
2.2 Hollow spherical nanocatalysts
2.3 Core@shell structured nanocatalysts
2.4 Yolk@shell-like nanocatalysts
2.5 Other nanocatalysts
3 Conclusion and outlook

中图分类号: 

()

[1] Lai T L, Yong K F, Yu J W, Chen J H, Shu Y Y, Wang C B. J. Hazard. Mater., 2011, 185: 366.
[2] Li J, Kuang D, Feng Y, Zhang F, Xu Z, Liu M. J. Hazard. Mater., 2012, 201/202: 250.
[3] 周桂林(Zhou G L), 魏梦颖(Wei M Y), 费丽莎(Fei L S), 吴茂(Wu M), 曹媛媛(Cao Y Y), 周新星(Zhou X X), 谢红梅(Xie H M). 水处理技术(Technology of Water Treatment), 2012, 38(2): 52.
[4] 王韬(Wang T), 李鑫钢(Li X G), 杜启云(Du Q Y). 化工进展(Chemical Industry and Engineering Progress), 2008, 27(2): 231.
[5] 史玲(Shi L), 黄廷林(Huang T L), 白雪莲(Bai X L). 水处理技术(Water Treatment Technology), 2011, 37(4): 49.
[6] Wang A J, Cheng H Y, Liang B, Ren N Q, Cui D, Lin N, Kim B H, Rabaey K. Environ. Sci. Technol., 2011, 45: 10186.
[7] Du Y, Chen H, Chen R, Xu N. Appl. Catal. A, 2004, 277: 259.
[8] 姜元国(Jiang Y G), 陈日志(Chen R Z), 邢卫红(Xing W H). 化工进展(Chemical Industry and Engineering Progress), 2011, 30(2): 309.
[9] Larsson E M, Langhammer C, Zoric I, Kasemo B. Science, 2009, 326: 1091.
[10] Alayoglu S, Nilekar A U, Mavrikakis M, Eichhorn B. Nat. Mater., 2008, 7: 333.
[11] Zhang F X, Han L, Israel L B, Daras J G, Maye M M, Ly N K, Zhong C J. Analyst., 2002, 127: 462.
[12] Link S, El-Sayed M A. J. Phys. Chem. B, 1999, 103: 8410.
[13] Noguez C, Garzon I L. Chem. Soc. Rev., 2009, 38: 757.
[14] Denkwitz Y, Makosch M, Geserick J, Hormann U, Selve S, Kaiser U, Husing N, Behm R J. Appl. Catal. B: Environmental, 2009, 91: 470.
[15] Sebastian D, Ruiz A G, Suelves I, Moliner R, Lazaro M J, Baglio V, Stassi A, Arico A S. Appl. Catal. B: Environmental, 2012, 115: 269.
[16] Zepeda T A, Hernandez A M, Lopez R G, Pawelec B. Appl. Catal. B: Environmental, 2010, 100: 450.
[17] Daniel M C, Astruc D. Chem. Res., 2004, 104: 293.
[18] Hayakawa K, Yoshimura T, Esumi K. Langmuir, 2003, 19: 5517.
[19] Kuroda K, Ishida T, Haruta M. J. Mol. Catal. A: Chem., 2009, 298: 7.
[20] Zeng J, Zhang Q, Chen J, Xia Y. Nano Lett., 2010, 10: 30.
[21] Herron N, Thorn D L. Adv. Mater., 1998, 10: 1173.
[22] Lee I, Morales R, Albiter M A, Zaera F. Proc. Natl. Acad. Sci. U. S. A., 2008, 105: 15241.
[23] Narayanan R, Tabor C, El-Sayed M A. Top. Catal., 2008, 48: 60.
[24] Zhao M, Sun L, Crooks R M. J. Am. Chem. Soc., 1998, 120: 4877.
[25] Enache D I, Edwards J K, Landon P, Solsona Espriu B, Carley A F, Herzing A A, Watanabe M, Kiely C J, Knight D W, Hutchings G J. Science, 2006, 311: 362.
[26] Tsunoyama H, Sakurai H, Tsukuda T. Chem. Phys. Lett., 2006, 429: 528.
[27] Hutchings G J. J. Catal., 1985, 96: 292.
[28] Haruta M, Kobayashi T, Sano H, Yamada N. Chem. Lett., 1987, 405.
[29] Guzman J, Gates B C, Nano Lett., 2001, 1: 689.
[30] Tabakova T, Boccuzzi F, Manzoli M, Andreeva D. Appl. Catal. A, 2003, 252: 385.
[31] Sinha A K, Seelan S, Tsubota S, Haruta M. Angew. Chem. Int. Ed., 2004, 43: 1546.
[32] Lee J, Park J C, Song H. Adv. Mater., 2008, 20(8): 1523.
[33] Hu N, Yin J Y, Tang Q, Chen Y. J. Polym. Sci. A: Polym. Chem., 2011, 49(17): 3826.
[34] Gajan D, Guillois K, Delichère P, Basset J M, Candy J P, Caps V, Copéret C, Lesage A, Emsley L. J. Am. Chem. Soc., 2009, 131: 14667.
[35] Wu X J, Xu D S. J. Am. Chem. Soc., 2009, 131: 2774.
[36] Tai Y, Yamaguchi W, Okada M, Ohashi F, Shimizu K, Satsuma A, Tajiri K, Kageyama H. J. Catal., 2010, 270: 234.
[37] Choi Y, Bae H S, Seo E, Jang S, Park K H, Kim B S. J. Mater. Chem., 2011, 21: 15431.
[38] Zhao G, Ling M, Hu H, Deng M, Xue Q, Lu Y. Green Chem., 2011, 13: 3088.
[39] Yang H, Nagai K J, Abe T, Homma H, Norimatsu T, Ramaraj R. ACS Appl. Mater. Interfaces, 2009, 1(9): 1860.
[40] Premkumar T E. Geckeler K. Chem-Asian J., 2010, 5(12): 2468.
[41] Gangula A, Podila R M R, Karanam L, Janardhana C, Rao A M. Langmuir, 2011, 27 (24): 15268.
[42] Huang H Z, Yang X R. Biomacromol., 2004, 5: 2340.
[43] Wu H, Zhuo L M, He Q, Liao X P, Shi B. Appl. Catal. A, 2009, 366: 44.
[44] Wu H, Huang X, Gao M M, Liao X P, Shi B. Green Chem., 2011, 13: 651.
[45] Lam E, Hrapovic S, Majid E, Chong J H, Luong J H. Nanoscale, 2012, 4: 997.
[46] Nemanashi M, Meijboom R. J. Colloid Interf. Sci., 2013, 389: 260.
[47] Wang M L, Jiang T T, Lu Y, Liu H J, Chen Y. J. Mater. Chem. A, 2013, 1: 5923.
[48] Sen I K, Maity K, Islam S S. Carbohydr. Polym., 2013, 91(2): 518.
[49] Rajesh S, Natalie S B, Jennifer S S. J. Macromol., 2008, 41(12): 4347.
[50] Yu Q Q, Dong Y Y, Liao W P, Jin M S, He T, Suo Z H. J. Fuel Chem. Technol., 2010, 38(2): 223.
[51] 李军波(Li J B), 李桂珍(Li G Z), 刘志飞(Liu Z F), 韩晨(Han C), 周惠云(Zhou H Y), 张军凯(Zhang J K). 应用化学(Chinese Journal of Applied Chemistry), 2012, 29(10): 1143.
[52] Zhang J M, Han D H, Zhang H J, Chaker M, Zhao Y, Ma D L. Chem. Commun., 2012, 48: 11510.
[53] Han D, Tong X, Boissiere O, Zhao Y. ACS Macro Lett., 2012, 1: 57.
[54] Zhu M Q, Wang L Q, Exarhos G J, Li A D Q. J. Am. Chem. Soc., 2004, 126: 2656.
[55] Liu X Y, Cheng F, Liu Y, Liu H J, Chen Y. J. Mater. Chem., 2010, 20: 360.
[56] Dong F P, Guo W P, Park S K, Ha C S. Chem. Commun., 2012, 48: 1108.
[57] Chen Z, Cui Z M, Cao C Y, He W D, Jiang L, Song W G. Langmuir, 2012, 28: 13452.
[58] Chen Z, Cui Z M, Niu F, Jiang L, Song W G. Chem. Commun., 2010, 46: 6524.
[59] Ji Q M, Hill J P, Ariga K. J. Mater. Chem. A, 2013, 1: 3600.
[60] Ji Q, Guo C, Yu X, Ochs C J, Hill J P, Caruso F, Nakazawa H, Ariga K. Small, 2012, 8: 2345.
[61] Manoharan Y, Ji Q, Yamazaki T, Shanmugavel C, Chen S, Ganesan S, Hill J P, Ariga K, Hanagata N. Int. J. Nanomed., 2012, 7: 3625.
[62] Abu-Reziq R, Alper H, Wang D, Post M L. J. Am. Chem. Soc., 2006, 128: 5279.
[63] Deng Y H, Cai Y, Sun Z K, Liu J, Liu C, Wei J, Li W, Liu C, Wang Y, Zhao D Y. J. Am. Chem. Soc., 2010, 132: 8466.
[64] Oliveira R L, Kiyohara P K, Rossi L M. Green Chem., 2010, 12: 144.
[65] Zhu Y, Shen J, Zhou K, Chen C, Yang X, Li C. J. Phy. Chem. C, 2011, 115: 1614.
[66] Zhu M, Wang C, Meng D, Diao G. J. Mater. Chem. A, 2013, 1: 2118.
[67] Mulfort K L, Hupp J T. J. Am. Chem. Soc., 2007, 129: 9604.
[68] Zhu M, Diao G. Nanoscale, 2011, 3: 2748.
[69] Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset J M. Chem. Rev., 2011, 111: 3036.
[70] Kim D, Lee N, Park M, Kim B Y, An K, Hyeon T. J. Am. Chem. Soc., 2009, 131: 454.
[71] Park H Y, Schadt M J, Wang L Y, Lim I S, Njoki P N, Kim S H, Jang M Y, Luo J, Zhong C J. Langmuir, 2007, 23: 9050.
[72] Yi C F, Xu Z S, Ford W T. Colloid Polym. Sci., 2004, 282: 1054.
[73] Antolini E, Gonzalez E R. Appl. Catal. A, 2009, 365(1): 1.
[74] Liu B, Zhang W, Yang F, Feng H, Yang X. J. Phys. Chem. C, 2011, 115: 15875.
[75] Wu S, Kaiser J, Guo X, Li L, Lu Y, Ballauff M. Ind. Eng. Chem. Res., 2012, 51: 5608.
[76] Xuan S, Wang Y X J, Yu J C, Leung K C F. Langmuir, 2009, 25: 11835.
[77] Contreras-Cáceres R, Abalde-Cela S, Guardia-Girós P, Fernández-Barbero A, Pérez-Juste J, Alvarez-Puebla R A, Liz-Marzán L M. Langmuir, 2011, 27: 4520.
[78] Chang Y C, Chen D H. J. Hazard. Mater., 2009, 165: 664.
[79] Chang Y C, Chen D H. J. Colloid Interf. Sci., 2005, 283: 446.
[80] Juang R S, Shao H J. Water Res., 2002, 36: 2999.
[81] Ng J C Y, Cheung W H, McKay G. J. Colloid Interf. Sci., 2002, 255: 64.
[82] Inoue K, Yoshizuka K, Ohto K. Anal. Chim. Acta, 1999, 388: 209.
[83] Zhang F W, Liu N, Zhao P, Sun J, Wang P, Ding W, Liu J T, Jin J, Ma J T. Appl. Surf. Sci., 2012, 263: 471.
[84] Kuroda K, Ishida T, Haruta M. J. Mol. Catal. A: Chemical, 2009, 298: 7.
[85] Gao Y, Ding X, Zheng Z, Cheng X, Peng Y. Chem. Commun., 2007, 3720.
[86] Lam E, Hrapovic S, Majid E, Chong J H, Luong J H T. Nanoscale, 2012, 4: 97.
[87] Marcelo G, Muñoz-Bonilla A, Fernández-García M. J. Phys. Chem. C, 2012, 116: 24717.
[88] Fei B, Qian B, Yang Z, Wang R, Liu W, Mak C, Xin J. Carbon, 2008, 46: 1795.
[89] Lee H, Dellatore S M, Miller W M, Messersmith P B. Science, 2007, 318: 426.
[90] Sureshkumar M, Siswanto D Y, Lee C K. J. Mater. Chem., 2010, 20: 6948.
[91] Black K C L, Black Z, Messersmith P B. Chem. Mater., 2011, 23: 1130.
[92] Zeng T, Zhang X L, Niu H Y, Ma Y R, Li W H, Cai Y Q. Appl. Catal. B: Environmental, 2013, 134/135: 26.
[93] Liu J, Sun Z K, Deng Y H, Zou Y, Li C Y, Guo X H, Xiong L Q, Gao Y, Li F Y, Zhao D Y. Angew. Chem. Int. Ed., 2009, 48: 5875.
[94] Lee H, Scherer N F, Messersmith P B. Proc. Natl. Acad. Sci. U. S. A., 2006, 103: 12999.
[95] Lee H, Lee Y, Statz A R, Rho J, Park T G, Messersmith P B. Adv. Mater., 2008, 20: 1619.
[96] Guo W C, Wang Q, Wang G, Yang M, Dong W J, Yu J. Chem-Asian J., 2013, 8(6): 1160.
[97] Zhu Y H, Shen J H, Zhou K F, Chen C, Yang X L, Li C Z. J. Phys. Chem. C, 2011, 115 (5): 1614.
[98] Zheng J M, Dong Y L, Wang W F, Ma Y H, Hu J, Chen X J, Chen X G. Nanoscale, 2013, 5: 4894.
[99] Du X, He J, Zhu J, Sun L, An S. Appl. Surf. Sci., 2012, 258: 2717.
[100] Ge J, Zhang Q, Zhang T, Yin Y. Angew. Chem., 2008, 120: 9056.
[101] Zhang Y, Liu S, Lu W, Wang L, Tian J, Sun X. Catal. Sci. Technol., 2011, 1: 1142.
[102] Liu B, Zhang D W, Wang J C, Chen C, Yang X L, Li C X. J. Phys. Chem. C, 2013, 117: 6363.
[103] Vestal C R, Zhang Z J. J. Am. Chem. Soc., 2002, 124: 14312.
[104] Wang Y, Teng X W, Wang J S, Yang H. Nano Lett., 2003, 3: 789.
[105] Yin Y Y, Chen M, Zhou S X, Wu L M. J. Mater. Chem., 2012, 22: 11245.
[106] Rahman Z U, Dong Y L, Su L, Ma Y H, Zhang H J, Chen X G. Chem. Eng. J., 2013, 222: 382.
[107] Wunder S, Polzer F, Lu Y, Mei Y, Ballauff M. J. Phys. Chem. C, 2010, 114 (19): 8814.
[108] Huang X, Liao X P, Shi B. Green Chem., 2011, 13: 2801.
[109] Zhou C J, Ren F, Wu W, Zhang S F, Xiao X H, Xu J X, Jiang C Z. J. Colloid Interf. Sci., 2012, 387(1): 47.
[110] Lai B H, Lin Y R, Chen D H. Chem. Eng. J., 2013, 223: 418.
[111] Huang H C, Barua S, Kay D B, Rege K, Simultaneous K. ACS Nano, 2009, 3: 2941.
[112] Liu Y C, Li M L, Chen G F. J. Mater. Chem. A, 2013, 1: 930.
[113] Zhang P, Shao C G, Li X H, Zhang M Y, Zhang X, Su C Y, Lu N, Wang K X, Liu Y C. Phys. Chem. Chem. Phys., 2013, 15: 10453.
[114] Xiao C F, Chen S M, Zhang L Y, Zhou S Q, Wu W T. Chem. Commun., 2012, 48: 11751.
[115] Yamamoto H, Yano H, Kouchi H, Obora Y, Arakawa R, Kawasaki H. Nanoscale, 2012, 4: 4148.
[116] Seo E, Kim J, Hong Y, Kim Y S, Lee D, Kim B S. J. Phys. Chem. C, 2013, 117: 11686.
[117] Nigra M M, Ha J M, Katz A. Catal. Sci. Technol., 2013, 3: 2976.
[118] Ke F, Zhu J F, Qiu L G, Jiang X. Chem. Commun., 2013, 49: 1267.
[119] Han L, Zhu C Z, Hu P, Dong S J. RSC Adv., 2013, 3: 12568.
[120] Chaudhuri R G, Paria S. Chem. Rev., 2012, 112: 2373.
[121] Lee I, Joo J B, Yin Y, Zaera F. Angew. Chem. Int. Ed., 2011, 50: 10208.
[122] Arnal P M, Comotti M, Schüth F. Angew. Chem. Int. Ed., 2006, 45: 8224.
[123] Lee J, Park J C, Song H. Adv. Mater., 2008, 20: 1523.
[124] Wang S N, Zhang M C, Zhang W Q. ACS Catal., 2011, 1(3): 207.
[125] Wu S H, Tseng C T, Lin Y S, Lin C H, Hung Y, Mou C Y. J. Mater. Chem., 2011, 21: 789.
[126] Wu X L, Tan L F, Chen D, He X L, Liu H Y, Meng X W, Tang F Q. Chem. Eur. J., 2012, 18: 15669.
[127] Guan B Y, Wang X, Xiao Y, Liu Y L, Huo Q S. Nanoscale, 2013, 5: 2469.
[128] Arnal P M, Comotti M, Schüth F. Angew. Chem. Int. Ed., 2006, 45: 8224.
[129] Wu S, Dzubiella J, Kaiser J, Drechsler M, Guo X H, Ballauff M, Lu Y. Angew. Chem. Int. Ed., 2012, 51(9): 2229.
[130] Liu B, Zhang W, Feng H L, Yang X L. Chem. Commun., 2011, 47: 11727.
[131] Lu W B, Ning R, Qin X Y, Zhang Y W, Chang G H, Liu S, Luo Y L, Sun X P. J. Hazard. Mater., 2011, 197: 320.
[132] Chen A, Qi J J, Zhao Q S, Li Y, Zhang G L, Zhang F B, Fan X B. RSC Adv., 2013, 3: 8973.
[133] Li J, Liu C Y, Liu Y. J. Mater. Chem., 2012, 22: 8426.
[134] MdRashid H, Bhattacharjee R R, Kotal A, Mandal T K. Langmuir, 2006, 22(17): 7141.
[135] Zhang Z Y, Shao C L, Zou P, Zhang P, Zhang M Y, Mu J B, Guo Z C, Li X H, Wang C H, Liu Y C. Chem. Commun., 2011, 47: 3906.
[136] Jin R X, Sun S L, Yang Y, Xing Y, Yu D H, Yu X D, Song S Y. Dalton Trans., 2013, 42: 7888.

[1] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[2] 冯海弟, 赵璐, 白云峰, 冯锋. 纳米金属有机框架在肿瘤靶向治疗中的应用[J]. 化学进展, 2022, 34(8): 1863-1878.
[3] 汤波, 王微, 罗爱芹. 新型多孔材料用作色谱手性固定相[J]. 化学进展, 2022, 34(2): 328-341.
[4] 方维娜, 鲁爽, 王丽华, 樊春海, 柳华杰. 纳米金三角片的合成及应用[J]. 化学进展, 2017, 29(5): 459-466.
[5] 何涛, 马小波, 徐志宏, 王周玉. 连续流微反应[J]. 化学进展, 2016, 28(6): 829-838.
[6] 田丹碧, 张卫, 汤燕, 江凌, 刘佳, 胡燚. 纳米金生物共轭探针在酶活检测中的应用[J]. 化学进展, 2015, 27(2/3): 267-274.
[7] 李龙飞, 摆音娜, 雷鸣, 刘力. 橡胶硫化促进剂的研究进展[J]. 化学进展, 2015, 27(10): 1500-1508.
[8] 江龙, 王清叶, 崔文娟. 金纳米颗粒的细胞毒性和促细胞生长作用[J]. 化学进展, 2013, 25(10): 1631-1641.
[9] 徐斌, 张继博, 马愫倩, 陈金龙, 董玉杰, 田文晶*. 二苯乙烯基蒽衍生物:聚集诱导发光性质、机理及应用[J]. 化学进展, 2013, 25(07): 1079-1089.
[10] 吴亮, 沐春磊, 张群林*, 吕忱, 张晓悦. 纳米粒子参与的鲁米诺化学发光及其分析应用[J]. 化学进展, 2013, 25(07): 1187-1197.
[11] 赵贝贝, 张艳, 唐涛, 王风云, 张维冰, 李彤. 硅胶基质高效液相色谱填料研究进展[J]. 化学进展, 2012, 24(01): 122-130.
[12] 张金堂 虞辰敏 汪苏靖 汪志勇. 纳米金属催化在偶联反应中的应用*[J]. 化学进展, 2010, 22(07): 1482-1489.
[13] 宋海岩 李钢 王祥生. 多孔材料负载金催化剂的制备与应用*[J]. 化学进展, 2010, 22(04): 573-579.
[14] 钟亚兰 蒋序林. 高效液相色谱表征高聚物*[J]. 化学进展, 2010, 22(04): 706-712.
[15] 陈英 张锴 何锡文 张玉奎. 质谱技术鉴定细胞中组蛋白翻译后修饰的研究进展*[J]. 化学进展, 2010, 22(04): 713-719.