English
新闻公告
More
化学进展 2014, Vol. 26 Issue (01): 30-40 DOI: 10.7536/PC130770 前一篇   后一篇

• 综述与评论 •

铋系半导体光催化剂的光催化性能调控

段芳1,2, 张琴1, 魏取福*2, 施冬健1, 陈明清*1   

  1. 1. 江南大学化学与材料工程学院 食品胶体与生物技术教育部重点实验室 无锡 214122;
    2. 江南大学生态纺织教育部重点实验室 无锡 214122
  • 收稿日期:2013-07-01 修回日期:2013-09-01 出版日期:2014-01-15 发布日期:2013-11-08
  • 通讯作者: 魏取福,e-mail:qfwei@jiangnan.edu.cn;陈明清,e-mail:mqsytu1@126.com E-mail:qfwei@jiangnan.edu.cn;mqsytu1@126.com
  • 基金资助:

    国家自然科学基金项目(No.51302108);江苏省自然科学基金项目(No.BK20130151)和生态纺织教育部重点实验室开放课题(No.KLET1206)资助

Control of Photocatalytic Property of Bismuth-Based Semiconductor Photocatalysts

Duan Fang1,2, Zhang Qin1, Wei Qufu*2, Shi Dongjian1, Chen Mingqing*1   

  1. 1. The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Materials Engineering, Jiangnan University, Wuxi 214122;
    2. The Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
  • Received:2013-07-01 Revised:2013-09-01 Online:2014-01-15 Published:2013-11-08
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 51302108), the Natural Science Foundation of Jiangsu Province, China (No. BK20130151) and the Key Laboratory of Eco-Textiles, Ministry of Education of China (No. KLET1206)

铋系光催化剂具有良好的光催化性能,由于其Bi6s和O2p的轨道杂化,提高了价带的位置,从而减小了禁带宽度,使得铋系光催化剂在可见光范围内具有明显的吸收,已成为近年来光催化领域研究的热点。铋系光催化剂在可见光区的光催化活性虽然比传统的TiO2有明显的提高,但其量子效率不高,光生电子-空穴容易结合,对可见光的吸收有限等问题,使其离实际应用仍存在较大的距离。因此,必须采取合适的措施来提高铋系催化剂的光生载流子速率,抑制光生电子-空穴复合,增强对可见光的吸收。本文主要综述了近年来在铋系半导体光催化剂光催化性能调控方面的最新研究进展,重点就铋系半导体光催化剂的形貌控制、特殊晶面暴露、贵金属沉积、离子掺杂、非金属掺杂、半导体复合等方面进行分析和总结,并对铋系半导体光催化剂的发展方向进行展望。

Bismuth-based semiconductor, with superior photocatalytic activity and especially with good absorbance in visible light, have become the research hotspot in photocatalytic field recently. The valence band of bismuth-based semiconductor photocatalyst consist of Bi6s and O2p orbitals and the levels are more negative than that consisting of only O2p, which results in the decrease in the band gap. The visible-light-induced photocatalytic activity of bismuth-based semiconductor photocatalysts is higher than that of traditional TiO2. However, the low quantum efficiency, the easy recombination of electrons and holes, and the low visible light absorption making the bismuth-based semiconductor photocatalysts far away from practical use. Therefore, we must take some measures to improve the efficiency of photocatalytic carriers, suppress the combination of photo electrons and holes, and increase the visible light absorption. This article reviews the recent development of methods for improving the photoactivity of bismuth-based semiconductor photocatalysts, mainly including morphology control, special crystal face exposing, noble metal deposition, metal ion doping, nonmetal doping, semiconductor combination and so on. The relationship between these methods and photocatalytic activity is analyzed, and it may be useful for designing highly efficient bismuth-based semiconductor photocatalysts. Besides, the main problems of the bismuth-based semiconductor photocatalysts are discussed, and the direction of development of the bismuth-based semiconductor photocatalysts is pointed out.

Contents
1 Introduction
2 Morphology and structure control
2.1 Synthesis of photocatalysts with special morphology
2.2 Porous structure
2.3 Highly active crystal face exposing
3 Noble metal depositing
4 Metal ion doping
5 Nonmetal doping
5.1 Carbon doping
5.2 Nitrogen doping
5.3 Graphene composite
5.4 Anion doping
5.5 Polymer modification
6 Semiconductor composite
7 Conclusion and outlook

中图分类号: 

()

[1] Fujishima A, Honda K. Nature, 1972, 238: 37.
[2] Fujihira M, Satoh Y, Osa T. Nature, 1981, 293: 206.
[3] Sunada K, Kikuchi Y, Hashimoto K, Fujishima A. Envrion. Sci. Technol., 1998, 32: 726.
[4] Konstantinou I K, Albanis T A. Appl. Catal. B: Environ., 2004, 49: 1.
[5] Zhao X, Xu T G, Yao W G, Zhang C, Zhu Y F. Appl. Catal. B: Environ., 2007, 72: 92.
[6] Ke D N, Peng T Y, Ma L, Cai P, Jiang P. Appl. Catal. A: Gen., 2008, 350: 111.
[7] Cheng H F, Huang B B, Liu Y Y, Wang Z Y, Qin X Y, Zhang X Y, Dai Y. Chem. Commun., 2012, 48: 9729.
[8] Brezesinski K, Ostermann R, Hartmann P, Perlich J, Brezesinski T. Chem. Mater., 2010, 22: 3079.
[9] Wang C H, Shao C L, Wang L J, Zhang L N, Li X H, Liu Y C. J. Colloid. Interf. Sci., 2009, 333: 242.
[10] Zhang X, Ai Z H, Jia F L, Zhang L Z. J. Phys. Chem. C, 2008, 112: 747.
[11] Xiao X, Zhang W D. J. Mater. Chem., 2010, 20: 5866.
[12] Zhang L, Chen D R, Jiao X L. J. Phys. Chem. B, 2006, 110: 2668.
[13] YU J, Kudo A. Adv. Funct. Mater., 2006, 16: 2163.
[14] Fu H B, Zhang L W, Yao W Q, Zhu Y F. Appl. Catal. B: Environ., 2006, 66: 100.
[15] Ren J, Wang W Z, Zhang L, Chang J, Hu S. Catal. Commun., 2009, 10: 1940.
[16] Shimodaira Y, Kato H, Kobayashi H, Kudo A. J. Phys. Chem. B, 2006, 110: 17790.
[17] Zheng Y, Duan F, Wu J, Liu L, Chen M Q, Xie Y. J. Mol. Catal. A: Chem., 2009, 303: 9.
[18] Yao W F, Wang H, Xu X H, Cheng X F, Huang J, Shang S X, Yang X N, Wang M. Appl. Catal. A: Gen., 2003, 243: 185.
[19] Zou Z G, Ye J H, Arakawa H. Mater. Sci. Eng. B, 2001, 79: 83.
[20] Tang J W, Zou Z G, Ye J H. Angew. Chem. Int. Ed., 2004, 43: 4463.
[21] Wang Z L, Song J H. Science, 2006, 312: 242.
[22] Xia Y N, Yang P D, Sun Y G, Wu Y Y, Mayers B, Gates B, Yin Y D, Kim E, Yan Y Q. Adv. Mater., 2003, 15: 353.
[23] Zhou L, Wang W Z, Xu H L, Sun S M, Shang M. Chem. Eur. J., 2009, 15: 1776.
[24] Cheng H F, Huang B B, Lu J B, Wang Z Y, Xu B, Qin X Y, Zhang X Y, Dai Y. Phys. Chem. Chem. Phys., 2010, 12: 15468.
[25] Zhang L, Chen D R, Jiao X L. J. Phys. Chem. B, 2006, 110: 2668.
[26] Zhou L, Wang W Z, Zhang L S, Xu H L, Zhu W. J. Phys. Chem. C, 2007, 111: 13659.
[27] Ren L, Jin L, Wang J B, Yang F, Qiu M Q, Yu Y. Nanotechnology, 2009, 20: 115603.
[28] Yin W Z, Wang W Z, Shang M, Zhou L, Sun S M, Wang L. Eur. J. Inorg. Chem., 2009, 4379.
[29] Sun Y F, Wu C Z, Long R, Cui Y, Zhang S D, Xie Y. Chem. Commun., 2009, 4542.
[30] Sun S M, Wang W Z, Zhou L, Xu H L. Ind. Eng. Chem. Res., 2009, 48: 1735.
[31] Zhao Y, Xie Y, Zhu X, Yan S, Wang S X. Chem. Eur. J., 2008, 14: 1601.
[32] Zheng Y, Wu J, Duan F, Xie Y. Chem. Lett., 2007, 36: 520.
[33] Kudo A, Hijii S. Chem. Lett., 1999, 1103.
[34] Zhang G K, Lü F, Li M, Yang J L, Zhang X Y, Huang B B. J. Phys. Chem. Solids, 2010, 71: 579.
[35] Zhang Z J, Wang W Z, Shang M, Yin W Z. J. Hazard. Mater., 2010, 177: 1013.
[36] Zhou L, Wang W Z, Zhang L S. J. Mol. Catal., 2007, 268: 195.
[37] Alfaro S O, Martínez-de la Cruz A. Appl. Catal. A, 2010, 383: 128.
[38] Zhang L S, Wang W Z, Chen Z G, Zhou L, Xu H L, Zhu W. J. Mater. Chem., 2007, 17: 2526.
[39] Zhang L S, Wang W Z, Zhou L, Xu H L. Small, 2007, 3: 1618.
[40] Zhang C, Zhu Y F. Chem. Mater., 2005, 17: 3537.
[41] Xia J X, Li H M, Luo Z J, Xu H, Wang K, Yin S, Yan Y S. Mater. Chem. Phys., 2010, 121: 6.
[42] Zhang L S, Wang H L, Chen Z G, Wong P K, Liu J S. Appl. Catal. B: Environ., 2011, 106: 1.
[43] Wu J, Duan F, Zheng Y, Xie Y. J. Phys. Chem. C, 2007, 111: 12866.
[44] Zhang L W, Xu T G, Zhao X, Zhu Y F. Appl. Catal. B: Environ., 2010, 98: 138.
[45] Bi J H, Wu L, Li J, Li Z H, Wang X X, Fu X Z. Acta Materialia, 2007, 55: 4699.
[46] Tian G H, Chen Y J, Zhou W, Pan K, Dong Y Z, Tian C G, Fu H G. J. Mater. Chem., 2011, 21: 887.
[47] Cheng H F, Huang B B, Yang K S, Wang Z Y, Qin X Y, Zhang X Y, Dai Y. Chem. Phys. Chem., 2010, 11: 2167.
[48] Zhao T Y, Zai J T, Xu M, Zou Q, Su Y Z, Wang K X, Qian X F. CrystEngComm, 2011, 13: 4010.
[49] Zhang X, Ai Z H, Jia F L, Zhang L Z. J. Phys. Chem. C, 2008, 112: 747.
[50] Kong L D, Chen H H, Hua W M, Zhang S C, Chen J M. Chem. Commun., 2008, 4977.
[51] Li G S, Zhang D Q, Yu J C. Chem. Mater., 2008, 20: 3983.
[52] Sun S M, Wang W Z, Zhang L. J. Mater. Chem., 2012, 22: 19244.
[53] Xi G C, Ye J H. Chem. Commun., 2010, 46: 1893.
[54] Wang D, Jiang H F, Zong X, Xu Q, Ma Y, Li G L. Chem. Eur. J., 2011, 17: 1275.
[55] Sun Y F, Xie Y, Wu C Z, Zhang S D, Jiang S S. Nano Res., 2010, 3: 620.
[56] Zhou Y, Tian Z P, Zhao Z Y, Liu Q, Kou J H, Chen X Y, Gao J, Yan S C, Zou Z G. ACS Appl. Mater. Interfaces, 2011, 3: 3594.
[57] Zheng Y, Duan F, Wu J, Liu L, Chen M Q, Xie Y. J. Mol. Catal. A: Chem., 2009, 303: 9.
[58] Zheng Y, Duan F, Chen M Q, Xie Y. J. Mol. Catal. A: Chem., 2010, 317: 34.
[59] Ge L. J. Mol. Catal. A: Chem., 2008, 282: 62.
[60] Ge L. Mater. Chem. Phys., 2008, 107: 465.
[61] Wang D J, Xue G L, Zhen Y Z, Fu F, Li D S. J. Mater. Chem., 2012, 22: 4751.
[62] Zhang X F, Zhang Y B, Quan X, Chen S. J. Hazard. Mater., 2009, 167: 911.
[63] Zhu G Q, Que W X, Zhang J. J. Alloy. Compd., 2011, 509: 9479.
[64] Li R H, Chen W X, Kobayashi H, Ma C X. Green Chem., 2010, 12: 212.
[65] Gurunathan K. Int. J. Hydrogen Energ., 2004, 29: 933.
[66] Xie J M, Lü X M, Chen M, Zhao G Q, Song Y Z, Lu S S. Dyes Pigments, 2008, 77: 43.
[67] Wu X H, Qin W, Li L, Guo Y, Xie Z Y. Catal. Commun., 2009, 10(5): 600.
[68] Xu H, Li H M, Wu C D, Chu J Y, Yan Y S, Shu H M, Gu Z. J. Hazard. Mater., 2008, 153: 877.
[69] Xu H, Li H, Wu C, Chu J, Yan Y, Shu H. Mater. Sci. Eng. B, 2008, 147: 52.
[70] Long M, Cai W, Cai J, Zhou B, Chai X, Wu Y. J. Phys. Chem. B, 2006, 110: 20211.
[71] Yao W, Iwai H, Ye J. Dalton Trans., 2008, 1426.
[72] Chatchai P, Murakami Y, Kishioka S, Nosaka A Y, Nosaka Y. Electrochim. Acta, 2009, 54: 1147.
[73] Jiang H, Nagai M, Kobayashi K. J. Alloys Compd., 2009, 24: 821.
[74] Zhang A, Zhang J. J. Hazard. Mater., 2010, 173: 265.
[75] Zhang L W, Man Y, Zhu Y F. ACS Catal., 2011, 1: 841.
[76] Xiao Q, Zhang J, Xiao C, Tan X. Catal. Commun., 2008, 9: 1247.
[77] Tian Y, Zhang L, Zhang J. J. Alloys Compd., 2012, 537: 24.
[78] Zhang H J, Chen G, Li X. Solid State Ionics, 2009, 180: 1599.
[79] Sun S M, Wang W Z, Xu H L, Zhou L, Shang M, Zhang L. J. Phys. Chem. C, 2008, 112: 17835.
[80] Wang Z Z, Qi Y J, Qi H Y, Lu C J, Wang S M. J. Mater. Sci. Mater. Electron., 2010, 21: 523.
[81] Hou Y, Xue J Q, Huang Z M, Li T X, Ge Y J, Chu J H. Thin Solid Films, 2008, 517: 901.
[82] Lee D K, Cho I S, Lee S, Bae S T, Noh J H, Kim D W, Hong K S. Mater. Chem. Phys., 2010, 119: 106.
[83] Li Y, Liu J, Huang X, Yu J. Dalton Trans., 2010, 39: 3420.
[84] Duan F, Zheng Y, Chen M Q. Mater. Lett., 2011, 65: 191.
[85] Zhu S B, Xu T G, Fu H B, Zhao J C, Zhu Y F. Environ. Sci. Technol., 2007, 41: 6234.
[86] Zhang Y, Yu J Q, Wang H W, Sun M M, Bu Y Y, Yu D S, Li W B. J. Nanotechnol., 2011, 2011: 702130.
[87] Dong F, Sun Y J, Fu M, Ho W K, Lee S C, Wu Z B. Langmuir, 2012, 28: 766.
[88] Lai K R, Wei W, Zhu Y T, Guo M, Dai Y, Huang B B. J. Solid State Chem., 2012, 187: 103.
[89] Ng Y H, Iwase A, Kudo A, Amal R. J. Phys. Chem. Lett., 2010, 1: 2607.
[90] Gao E P, Wang W Z, Shang M, Xu J H. Phys. Chem. Chem. Phys., 2011, 13: 2887.
[91] Wang P F, Ao Y H, Wang C, Hou J, Qian J. Carbon, 2012, 50: 5256.
[92] Ai Z H, Ho W K, Lee S C. J. Phys. Chem. C, 2011, 115: 25330.
[93] Song S Y, Wei G, Wang X, Li X Y, Liu D P, Xing Y, Zhang H J. Dalton Trans., 2012, 41: 10472.
[94] Tu X M, Luo S L, Chen G X, Li J H. Chem. Eur. J., 2012, 18: 14359.
[95] Fu H B, Zhang S C, Xu T G, Zhu Y F, Chen J M. Environ. Sci. Technol., 2008, 42: 2085.
[96] Zhang K, Zhang D Q, Liu J, Ren K X, Luo H, Peng Y J, Li G S, Yu X B. CrystEngComm, 2012, 14: 700.
[97] Jo W J, Jang J W, Kong K J, Kang H J, Kim J Y, Jun H, Parmar K P S, Lee J S. Angew. Chem. Int. Ed., 2012, 51: 3147.
[98] Shang M, Wang W Z, Sun S M, Ren J, Zhou L, Zhang L. J. Phys. Chem. C, 2009, 113 (47): 20228.
[99] Hou J G, Cao R, Jiao S Q, Zhu H M, Kumar R V. Appl. Catal. B: Environ., 2011, 104: 399.
[100] Duan F, Zhang Q H, Shi D J, Chen M Q. Appl. Surf. Sci., 2013, 268: 129.
[101] Xiao Q, Zhang J, Xiao C, Tian X. Catal. Commun., 2008, 9: 1247.
[102] Chai S Y, Kim Y J, Jung M H, Chakraborty A K, Jung D, Lee W I. J. Catal., 2009, 262: 144.
[103] Cheng H F, Huang B B, Wang P, Wang Z Y, Lou Z Z, Wang J P, Qin X Y, Zhang X Y, Dai Y. Chem. Commun., 2011, 47: 7054.
[104] Liu Y Y, Son W J, Lu J B, Huang B B, Dai Y, Whangbo M H. Chem. Eur. J., 2011, 17: 9342.
[105] Zhang Z J, Wang W Z, Wang L, Sun S M. ACS Appl. Mater. Interfaces, 2012, 4: 593.
[106] Colón G, López S M, Hidalgo M C, Navío J A. Chem. Commun., 2010, 46: 4809.
[107] Hou J G, Wang Z, Jiao S Q, Zhu H M. CrystEngComm, 2012, 14: 5923.
[108] Wetchakun N, Chaiwichain S, Inceesungvorn B, Pingmuang K, Phanichphant S, Minett A I, Chen J. ACS Appl. Mater. Interfaces, 2012, 4: 3718.
[109] Cheng H F, Huang B B, Qin X Y, Zhang X Y, Dai Y. Chem. Commun., 2012, 48: 97.

[1] 顾婷婷, 顾坚, 张喻, 任华. 金属硼氢化物基固态储氢体系[J]. 化学进展, 2020, 32(5): 665-686.
[2] 李志勇, 冯莹, 王慧勇, 袁晓晴, 赵玉灵, 王键吉. 光响应离子液体的结构与性能调控[J]. 化学进展, 2019, 31(11): 1550-1559.
[3] 张霞, 樊静. 碳材料修饰铋系光催化剂及其应用[J]. 化学进展, 2016, 28(4): 438-449.
[4] 李超, 范美强, 陈海潮, 陈达, 田光磊, 舒康颖. Li-Mg-N-H体系储氢材料的热力学和动力学调控[J]. 化学进展, 2016, 28(12): 1788-1797.
[5] 李涛, 陈德良. 多级复合半导体纳米材料的制备[J]. 化学进展, 2011, 23(12): 2498-2509.