English
新闻公告
More
化学进展 2014, Vol. 26 Issue (0203): 303-309 DOI: 10.7536/PC130749 前一篇   后一篇

• 综述与评论 •

基于蛋白质分子自组装体系的构建

何乃普*1, 逯盛芳1, 赵伟刚1, 杜曦1, 黄思凯1, 王荣民*2   

  1. 1. 兰州交通大学化学与生物工程学院 兰州 730070;
    2. 西北师范大学高分子研究所 生态环境相关高分子材料教育部重点实验室 兰州 730070
  • 收稿日期:2013-07-01 修回日期:2013-10-01 出版日期:2014-02-15 发布日期:2013-12-18
  • 通讯作者: 何乃普,e-mail:henaipu@mail.lzjtu.cn;王荣民,e-mail:wangrm@nwnu.edu.cn E-mail:henaipu@mail.lzjtu.cn;wangrm@nwnu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 21164003,21263024,21364012)和甘肃省自然科学基金项目(No. 1212RJZA066,1308RJZA137)资助

Fabrication of the Self-Assembly Systems Based on Protein Molecules

He Naipu*1, Lu Shengfang1, Zhao Weigang1, Du Xi1, Huang Sikai1, Wang Rongmin*2   

  1. 1. College of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
    2. Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Institute of Polymer, Northwest Normal University, Lanzhou 730070, China
  • Received:2013-07-01 Revised:2013-10-01 Online:2014-02-15 Published:2013-12-18
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21164003, 21263024, 21364012) and the Natural Science Foundation of Gansu Province, China (No. 1212RJZA066,1308RJZA137)

蛋白质是一类功能丰富、结构独特的生物大分子,具有高度的自组装特性。氨基酸通过酰胺键形成序列确定的肽链,是蛋白质的基本构成单元。肽链通过弱相互作用控制肽链折叠以及蛋白质高级结构的形成。同时,蛋白质是一种来源丰富、生物可降解以及生物相容性可再生资源,利用蛋白质的自组装特性构建具有生物功能的可控自组装体系是纳米科学、材料科学以及生物医学等学科潜在的研究课题之一。本文从分子科学的角度解析了蛋白质三维结构的自组装特性,进一步探讨蛋白质热变性后自组装、金属诱导的蛋白质自组装、蛋白质与高分子的自组装以及蛋白质杂化体的自组装。旨在进一步认识和理解蛋白质的自组装特性,并为设计和构建结构可控及功能独特的自组装体系提供思路。

Proteins possess versatile function and unique structure, and show the distinguished self-assembly feature. Polypeptide chains with the determined amino acid sequence are formed through amide bond and considered as the primary building blocks of protein. The weak intermolecular interactions of polypeptide chains control the folding of the polypeptide chains and high-level structure of protein. In addition, proteins are a class of renewable resources and show biodegradable and biocompatible. Using the self-assembly feature of protein is the potential strategy for fabricate the controlled self-assembly system with biofunctional in the field of nanoscience, materials and biomedical and so on. Hence, the present review describes the self-assembly feature of protein from the chemical point of view. The self-assembly of heat-denatured protein, metal-induced self-assembly of protein, self-assembly of protein with polymer and self-assembly of protein hybrids are further explored. The goal of this review is to further learn and understand the self-assembly feature of protein, and provide ideas for designing and fabricating the controlled structural self-assembly systems with unique function.

Contents
1 Introduction
2 Self-assembly feature of protein structure
3 Self-assembly of denatured protein
4 Metal-induced self-assembly of protein
5 Self-assembly of polymer with protein
6 Self-assembly of protein-polymer hybrid
7 Conclusions and outlook

中图分类号: 

()

[1] Niemeyer C M. Angew. Chem. Int. Ed., 2001, 40: 4128.
[2] Philp D, Stoddart J F. Angew. Chem. Int. Ed., 1996, 35: 1154.
[3] 周灵德(Zhou L D), 阎玉华(Yan Y H), 戴红莲(Dai H L), 胡鹏(Hu P), 余海湖(Yu H H). 生命的化学(Chemistry of Life), 2006, 26: 9.
[4] Yin P, Choi H M T, Calvert C R, Pierce N A. Nature, 2008, 451: 318.
[5] 张先恩(Zhang X N). 科学通报(Chinese Science Bulletin), 2009, 54: 2682.
[6] Thirumalai D, Klimov D K, Dima R I. Curr. Opin. Stru. Biol., 2003, 13: 146.
[7] Whitesides G M, Grzybowski B. Science, 2002, 295: 2418.
[8] Zhang S, Marini D M, Hwang W, Santoso S. Curr. Opin. Struc. Biol., 2002, 6: 865.
[9] Reches M, Gazit E. Curr. Nanosci., 2006, 2: 105.
[10] Jones O G, Mezzenga R. Soft Matter, 2012, 8: 876.
[11] Rajagopal K, Schneider J P. Curr. Opin. Stru. Biol., 2004, 14: 480.
[12] Petka W A, Harden J L, McGrath K P, Wirtz D, Tirrell D A. Science, 1998, 281: 389.
[13] Petsko G A, Ringe D. Protein Structure and Function. New Science Press, 2004. 3.
[14] Keskin O, Gursoy A, Ma B, Nussinov R. Chem. Rev., 2008, 108: 1225.
[15] Pokala N, Handel T M. J. Stru. Biol., 2001, 134: 269.
[16] Stites W E. Chem. Rev., 1997, 97: 1233.
[17] Mehta A K, Lu K, Seth-Childers W, Liang Y, Dublin S N, Dong J, Snyder J P, Pingali S V, Thiyagarajan P, Lynn D G. J. Am. Chem. Soc., 2008, 130: 9829.
[18] Fahnestock S R, Steinbuchel A, (Eds). 生物高分子(第7卷)—聚酰胺和蛋白质材料Ⅱ(Biopolymers. Vol.7: Polyamides and Complex Proteinaceous Materials Ⅱ). 邵正中(Shao Z Z), 杨新林(Yang X L), 主译(Trans.). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2005, 241.
[19] Hamilton T D, MacGillivray L R. Encyc. Supramol. Chem., 2007, 1257.
[20] Yeates T O, Padilla J E. Curr. Opin. Struc. Biol., 2002, 12: 464.
[21] Xie J, Cao Y, Pan H, Qin M, Yan Z Q, Xiong X, Wang W. Proteins, 2012, 80: 2501
[22] Xie J, Qin M, Cao Y, Wang W. Proteins, 2011, 79: 2505.
[23] Goodsell D S. 生物纳米技术: 来自大自然的启示(Bionanotechnology Lessons from Nature). 张文熊(Zhang W X), 张鹏(Zhang P), 王文雅(Wang W Y), 译(Trans.). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2006, 64.
[24] Chong S H, Ham S. Proc. Natl. Acad. Sci. U. S. A., 2012, 109: 7636.
[25] Jordens S, Adamcik J, Amar-Yuli I, Mezzenga R. Biomacromolecules, 2011, 12: 187.
[26] Lara C, Adamcik J, Jordens S, Mezzenga R. Biomacromolecules, 2011, 12: 1868.
[27] Rizzo A, Inganäs O, Solin N. Chem. A Eur. J., 2010, 16: 4190.
[28] Jung J-M, Savin G, Pouzot M, Schmitt C, Mezzenga R. Biomacromolecules, 2008, 9: 2477.
[29] van der Linden E, Venema P. Curr. Opin. Colloid Interface Sci., 2007, 12: 158.
[30] Miwa N, Yokoyama K, Nio N, Sonomoto K. J. Agric. Food Chem., 2013, 61: 2205.
[31] Bolisetty S, Harnau L, Jung J, Mezzenga R. Biomacromolecules, 2012, 13: 3241.
[32] Adamcik J, Mezzenga R. Macromolecules, 2012, 45: 1137.
[33] Loveday S M, Wang X L, Rao M A, Anema S G, Singh H. J. Agric. Food Chem., 2011, 59: 8467.
[34] Foderà V, van de Weert M, Vestergaard B. Soft Matter, 2010, 6: 4413.
[35] 蒋明(Jiang M), 沈涛(Shen T), 徐辉碧(Xu H B), 刘长林(Liu C L). 化学进展(Progress in Chemistry), 2002, 14(4): 263.
[36] 王荣民(Wang R M), 朱永峰(Zhu Y F), 何玉凤(He Y F), 李岩(Li Y), 毛崇武(Mao C W), 何乃普(He N P). 化学进展(Progress in Chemistry), 2010, 22: 1952.
[37] Bogdan N D, Matache M, Roiban D G D. Dobrot? C, Veronika Meier M, Funeriu D P. Biomacromolecules, 2011, 12: 3400.
[38] Salgado E N, Radford R J, Akif-Tezcan F. Acc. Chem. Res., 2010, 43: 661.
[39] Letondor C, Ward. Artificial T R. ChemBioChem, 2006, 7: 1845.
[40] Mark S S, Bergkvist M, Yang X, Angert E R, Batt C A. Biomacromolecules, 2006, 7: 1884.
[41] Salgado E N, Brodin J D, To M M, Akif Tezcan F. Inorg. Chem., 2011, 50: 6323.
[42] Borman S. Chem. Eng. News, 2012, 90: 9.
[43] Allendorf M D, Bauer C A, Bhakta R K, Houk R J T. Chem. Soc. Rev., 2009, 38: 1330.
[44] Wang B, Cote A P, Furukawa H, O'Keeffe M, Yaghi O M. Nature, 2008, 453: 207.
[45] Pluth M D, Bergman R G, Raymond K N. Science, 2007, 316: 85.
[46] Ball Z T. Acc. Chem. Res. 2013, 46: 560.
[47] Jain A, Buchko G W, Reback M L. ACS Cat., 2012, 2: 2114.
[48] 裴菲(Pei F), 何玉凤(He Y F), 李晓晓(Li X X), 王荣民(Wang R M), 李刚(Li G), 赵婷婷(Zhao T T). 化学进展(Progress in Chemistry), 2013, 25: 340.
[49] 殷晓春(Yin X C), 王荣民((Wang R M), 何玉凤(He Y F), 朱永峰(Zhu Y F), 裴菲(Pei F). 化学进展(Progress in Chemistry), 2011, 23: 963.
[50] Castelletto V, Krysmann M J, Clifton L A, Lambourne J, Noirez L. J. Phys. Chem. B, 2007, 111: 11330.
[51] Castelletto V, Krysmann M. Biomacromolecules, 2007, 8: 2244.
[52] Kitagishi H, Kakikura Y, Yamaguchi H, Oohora K, Harada A, Hayashi T. Angew. Chem. Int. Ed., 2009, 48: 1271.
[53] Komatsu T, Wang R-M, Zunszain P A, Curry S, Tsuchida E. J. Am. Chem. Soc., 2006, 128: 16297.
[54] Heredia K L, Grover G N, Tao L, Maynard H D. Macromolecules, 2009, 42: 2360.
[55] Gou Y, Slavin S, Geng J, Voorhaar L, Haddleton D M, Remzi Becer C. ACS Macro Lett., 2012, 1: 180.
[56] Topuzogullar M, Cimen N S, Mustafaeva Z, Mustafaev M. Eur. Polym. J., 2007, 43: 2935.
[57] Kim B, Lam C N, Olsen B D. Macromolecules, 2012, 45: 4572.
[58] Cooper C L, Dubin P L, Kayitmazer A B, Turksen S. Curr. Opin. Colloid Interface Sci., 2005, 10: 52.
[59] He N P, Wang R M, He Y F, Zhou Y, Wang X J, Pei F. J. Controlled Release, 2011, 152: e208.
[60] Jones O G, Handschin S, Adamcik J, Handschin S, Bolisetty S, Mezzenga R. Biomacromolecules, 2011, 12: 3056.
[61] Aaron Lau K H, Bang J, Kim D H, Knoll W. Adv. Funct. Mat., 2008, 18: 3148.
[62] Kumar N, Parajuli O, Dorfman A, Kipp D, Hahm J I. Langmuir, 2007, 23: 7416.
[63] Chen H, Yuan L, Song W, Wu Z, Li D. Prog. Polym. Sci., 2008, 33: 1059.
[64] Gray J J. Curr. Opin. Stru. Biol., 2004, 14: 110.
[65] Wang R M, Li G, Zhang H F, He Y F, He N P, Lei Z. Polym. Adv. Technol., 2010, 21: 685.
[66] 何乃普(He N P), 王荣民(Wang R M). 化学进展(Progress in Chemistry), 2012, 24(01): 94.
[67] 何乃普(He N P), 何玉凤(He Y F), 王荣民(Wang R M), 宋鹏飞(Song P F), 周云(Zhou Y). 化学进展(Progress in Chemistry), 2010, 22: 2388.
[64] Witus L S, Francis M B. Acc. Chem. Res., 2011, 44: 774.
[69] Börner H G. Prog. Polym. Sci., 2009, 34: 811.
[70] Reynhout I C, Cornelissen J J L M, Nolte R J M. Acc. Chem. Res., 2009, 42: 681.
[71] Velonia K, Rowan A E, Nolte R J M. J. Am. Chem. Soc., 2002, 124: 4224.
[72] Reynhout I C, Cornelissen J J L M, Nolte R J M. J. Am. Chem. Soc., 2007, 129: 2327.
[73] He N P, Wang R M, He Y F, Dang X M. Sci. Chin. Chem., 2012, 55: 1788.
[74] Thomas C S, Glassman M J, Olsen B D. ACS Nano, 2011, 5: 5697.
[75] Thomas C S, Xu L, Olsen B D. Biomacromolecules, 2012, 13: 2781.

[1] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[2] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[3] 王妍妍, 陈丽敏, 李思扬, 来鲁华. 无序蛋白质在生物分子凝聚相形成与调控中的作用[J]. 化学进展, 2022, 34(7): 1610-1618.
[4] 张沐雅, 刘嘉琪, 陈旺, 王利强, 陈杰, 梁毅. 蛋白质凝聚作用在神经退行性疾病中的作用机制研究[J]. 化学进展, 2022, 34(7): 1619-1625.
[5] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[6] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[7] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[8] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[9] 陈雅琼, 宋洪东, 吴懋, 陆扬, 管骁. 蛋白质-多糖复合体系在活性物质传递中的应用[J]. 化学进展, 2022, 34(10): 2267-2282.
[10] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[11] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[12] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[13] 林子涵, 陈煌, 董嘉伟, 赵道辉, 李理波. 纳米孔生物分子检测研究[J]. 化学进展, 2020, 32(5): 562-580.
[14] 宁鹏, 程云辉, 许宙, 丁利, 陈茂龙. 金属-有机框架材料在活性肽富集中的应用[J]. 化学进展, 2020, 32(4): 497-504.
[15] 智康康, 杨鑫. 天然产物凝胶及其凝胶质[J]. 化学进展, 2019, 31(9): 1314-1328.