English
新闻公告
More
化学进展 2014, Vol. 26 Issue (0203): 334-344 DOI: 10.7536/PC130740 前一篇   后一篇

• 综述与评论 •

醇-胺直接脱氢及氧化脱氢偶联酰胺化反应

马文婵, 周乔, 张月成, 赵继全*   

  1. 河北工业大学化工学院 天津 300130
  • 收稿日期:2013-07-01 修回日期:2013-09-01 出版日期:2014-02-15 发布日期:2013-12-18
  • 通讯作者: 赵继全,e-mail:zhaojq@hebut.edu.cn E-mail:zhaojq@hebut.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.21276061)和河北省自然科学基金项目(No.B2013202158)资助

Direct and Oxidatively Dehydrogenative Coupling of Alcohols with Amines to Amides

Ma Wenchan, Zhou Qiao, Zhang Yuecheng, Zhao Jiquan*   

  1. School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
  • Received:2013-07-01 Revised:2013-09-01 Online:2014-02-15 Published:2013-12-18
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No.21276061) and the Natural Science Foundation of Hebei Province, China (No.B2013202158)

醇-胺(氨)直接脱氢及氧化脱氢偶联生成酰胺具有原子经济性高和对环境友好等优点,因而受到广泛关注。研究发现,一些过渡金属钌及铑配合物、负载金及银纳米粒子、氧化锰分子筛(OMS-2)以及基于铜、铁化合物的催化体系在醇-胺(氨)直接脱氢或氧化脱氢偶联生成酰胺反应中显示出优良的催化性能。本文首先介绍了PNN-钌、NHC-钌配合物、铑配合物以及负载银原子簇催化的醇-胺(氨)直接脱氢偶联生成酰胺反应的研究进展,然后对负载纳米金粒子、氧化锰分子筛(OMS-2)以及基于铜、铁化合物的催化体系催化的不同氧化剂,包括分子氧、叔丁基过氧化氢以及分子碘氧化的氧化酰胺化反应进行了总结。对各催化剂或催化体系的适用范围和优缺点进行了分析,阐述了主要催化剂或催化体系的催化机理。此外,还对无过渡金属参与的醇-胺氧化酰胺化反应体系进行概述。最后,在总结现有成果的基础上指出了该领域的发展方向。

Direct and oxidatively dehydrogenative coupling of alcohols with amines or ammonia to amides have the advantages of high atom economy and environmental friendliness, therefore,they have received much attention from scientists. They have been found that some ruthenium and rhodium complexes, supported gold and silver nanoparticles, manganese oxide based molecular sieves (OMS-2), and copper and iron-based catalytic systems have exhibited excellent performances on the amidation reactions. In this article, the progress of direct dehydrogenative coupling of alcohols with amines or ammonia to amides respectively catalyzed by ruthenium and rhodium complexes, supported gold and silver nanoparticles is introduced firstly. Then the oxidative amidation reactions of alcohols with amines or ammonia respectively catalyzed by supported gold nanoparticles, manganese oxide based molecular sieves (OMS-2), and copper and iron-based catalytic systems with different reagents, including molecular oxygen, tert-butyl peroxide (TBHP) and molecular iodine as oxidants are reviewed. The possible catalytic mechanisms of some catalysts or catalytic systems are discussed. Meanwhile, the scope of application, advantages and disadvantages of each catalyst or catalytic system are described. In addition, some transition metal-free reaction systems for the oxidative amidation of alcohols with amines are also summarized. Finally, the development directions in this field are predicted based on the results described above.

Contents
1 Introduction
2 Direct dehydrogenative coupling of alcohols with amines to amides
2.1 Ruthenium and rhodium complexes as homogeneous catalysts for the reaction
2.2 Supported gold and silver as heterogeneous catalysts for the reaction
3 Oxidative amidation of alcohols with amines
3.1 Oxidative amidation of alcohols with amines by molecular oxygen
3.2 Oxidative amidation of alcohols with amines by other oxidants
4 Conclusions

中图分类号: 

()

[1] Smith M B, March J. March's. Advanced Organic Chemistry. 5th ed. NY: Wiley, 2001.1251.
[2] Smith M B. Organic Synthesis. 2nd ed. NY: McGraw-Hill, 2002. 558.
[3] Köhn M, Breinbauer R. Angew. Chem. Int. Ed., 2004, 43: 3106.
[4] Martinelli J R, Clark T P, Watson D A, Munday R H, Buchwald S L. Angew. Chem. Int. Ed., 2007, 46: 8460.
[5] Yoo W J, Li C J. J. Am. Chem. Soc., 2006, 128: 13064.
[6] Gunanathan C, Ben-David Y, Milstein D. Science, 2007, 317: 790.
[7] Zeng H, Guan Z. J. Am. Chem. Soc., 2011, 133: 1159.
[8] Nordstrm L U, Vogt H, Madsen R. J. Am. Chem. Soc., 2008, 130: 17672.
[9] Dam J H, Osztrovszky G, Nordstrm L U, Madsen R. Chem. Eur. J., 2010, 16: 6820.
[10] Ghosh S C, Muthaiah S, Zhang Y, Xu X, Hong S H. Adv. Synth. Catal., 2009, 351: 2643.
[11] Zhang J, Senthilkumar M, Ghosh S C, Hong S H. Angew. Chem. Int. Ed., 2010, 49: 6391.
[12] Watson A J, Maxwell A C, Williams J M J. Org. Lett., 2009, 11: 2667.
[13] Zweifel T, Naubron J V, Grützmacher H. Angew. Chem. Int. Ed., 2009, 48: 559.
[14] Fujita K, Takahashi Y, Owaki M, Yamamoto K, Yamaguchi R. Org. Lett., 2004, 6: 2785.
[15] Shimizu K-i, Ohshima K, Satsuma A. Chem. Eur. J., 2009, 15: 9977.
[16] Zhu J, Zhang Y, Shi F, Deng Y. Tetrahedron Lett., 2012, 53: 3178.
[17] Parmeggiani C, Cardona F. Green Chem., 2012, 14: 547.
[18] Ishida T, Haruta M. ChemSusChem, 2009, 2: 538.
[19] Kegns S, Mielby J, Mentzel U V, Jensen T, Fristrup P, Riisager A. Chem. Commun., 2012, 48: 2427.
[20] Mielby J, Riisager A, Fristrup P, Kegns S. Catal. Today, 2013, 203: 211.
[21] Ishida T, Watanabe H, Takei T, Hamasaki A, Tokunaga M, Haruta M. Appl Catal A: General, 2012, 425/426: 85.
[22] Wang Y, Zhu D, Tang L, Wang S, Wang Z. Angew. Chem. Int. Ed., 2011, 123: 9079.
[23] Soulé J F, Miyamura H, Kobayashi S. J. Am. Chem. Soc., 2011, 133: 18550.
[24] Soulé J F, Miyamura H, Kobayashi S. Asian J. Org. Chem., 2012, 1: 319.
[25] Yamaguchi K, Kobayashi H, Oshi T, Mizuno N. Angew. Chem. Int. Ed., 2012, 51: 544.
[26] Yamaguchi K, Kobayashi H, Wang Y, Oishi T, Ogasawara Y, Mizuno N. Catal. Sci. Technol., 2013, 3: 318.
[27] Nie R, Shi J, Xia S, Shen L, Chen P, Hou Z, Xiao F S. J. Mater. Chem., 2012, 22: 18115.
[28] Gamez P, Arends I, Reedijk J, Sheldon R A. Chem. Commun., 2003, 2414.
[29] Gamez P, Arends I, Sheldon R A, Reedijk J. Adv. Synth. Catal., 2004, 346: 805.
[30] Lu Z, Costa J S, Roubeau O, Mutikainen I, Turpeinen U, Teat S J, Gamez P, Reedijk J. Dalton Trans., 2008, 27: 3567.
[31] Tao C, Liu F, Zhu Y, Liu W, Cao Z. Org. Biomol. Chem., 2013, 11: 3349.
[32] Yoo W J, Li C J. J. Am. Chem. Soc., 2006, 128: 13064.
[33] Reddy K R, Maheswari C U, Venkateshwar M, Kantam M L. Eur. J. Org. Chem., 2008, 73(9): 3619.
[34] Ekoue-Kovi K, Wolf C. Org. Lett., 2007, 9: 3429.
[35] Tank R, Pathak U, Vimal M, Bhattacharyya S, Pandey L K. Green Chem., 2011, 13: 3350.
[36] Ahmad J U, Raisanen M T, Leskela M, Repo T. Appl. Catal. A: General, 2012, 411/412: 180.
[37] Bantreil X, Fleith C, Martinez J, Lamaty F. ChemCatChem, 2012, 4: 1922.
[38] Wu X F, Sharif M, Pews-Davtyan A, Langer P, Ayub K, Beller M. Eur. J. Org. Chem., 2013, 2783.
[39] Das R, Chakraborty D. Catal. Commun., 2012, 26: 48.
[40] Ohmura R, Takahata M, Togo H. Tetrahedron Lett., 2010, 51: 4378.
[41] Yao H, Tang Y, Yamamoto K. Tetrahedron Lett., 2012, 53: 5094.

[1] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[2] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[3] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[4] 吴亚娟, 罗静雯, 黄永吉. 二氧化碳与二甲胺催化合成N,N-二甲基甲酰胺[J]. 化学进展, 2022, 34(6): 1431-1439.
[5] 孙思敏, 许家喜. 磺酰氯与不饱和化合物的反应[J]. 化学进展, 2022, 34(6): 1275-1289.
[6] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[7] 吴巧妹, 杨启悦, 曾宪海, 邓佳慧, 张良清, 邱佳容. 纤维素基生物质催化转化制备二醇[J]. 化学进展, 2022, 34(10): 2173-2189.
[8] 田少鹏, 任花萍, 陈明淑, 苗宗成, 谭猗生. 非计量Zn-Cr尖晶石中离子占位对催化合成气合成异丁醇中的关键作用[J]. 化学进展, 2022, 34(1): 155-167.
[9] 曹新华, 韩晴晴, 高爱萍, 王桂霞. 气态酸和有机胺响应的超分子凝胶[J]. 化学进展, 2021, 33(9): 1538-1549.
[10] 党耶城, 冯杨振, 陈杜刚. 红光/近红外光硫醇荧光探针[J]. 化学进展, 2021, 33(5): 868-882.
[11] 程熙萌, 张庆瑞. 功能蛋白纳米材料在环境保护中的应用[J]. 化学进展, 2021, 33(4): 678-688.
[12] 陈曦, 李喆垚, 陈亚运, 陈志华, 胡艳, 刘传祥. C—H氰烷基化:导向基控制的萘酰亚胺C—H氰烷基化[J]. 化学进展, 2021, 33(11): 1947-1952.
[13] 张芬铭, 田语舒, 郑绩, 陈堃, 冯岸超, 张立群. 基于PHPMA的生物医用功能高分子[J]. 化学进展, 2020, 32(2/3): 331-343.
[14] 王新之, 王红利, 石峰. 基于多相催化体系构建的醇胺化合成N-烷基胺[J]. 化学进展, 2020, 32(2/3): 162-178.
[15] 刘耀阳, 刘志斌, 赵闯, 周羽, 高杨, 何辉. 锕系元素分离研究:不对称双酰胺荚醚的萃取化学及应用[J]. 化学进展, 2020, 32(2/3): 219-229.