English
新闻公告
More
化学进展 2014, Vol. 26 Issue (0203): 450-457 DOI: 10.7536/PC130705 前一篇   后一篇

• 综述与评论 •

高分子-无机复合纳米微球的制备和诊疗应用

林英*1,2, 丁寅2,3, 蒋锡群*2   

  1. 1. 安徽工程大学生物与化学工程学院 芜湖 241000;
    2. 南京大学化学化工学院 南京 210093;
    3. 生命分析化学国家重点实验室 南京 210093
  • 收稿日期:2013-07-01 修回日期:2013-09-01 出版日期:2014-02-15 发布日期:2013-12-18
  • 通讯作者: 林英,e-mail:liny@ahpu.edu.cn;蒋锡群,e-mail:jiangx@nju.edu.cn E-mail:liny@ahpu.edu.cn;jiangx@nju.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 51033002,51303003)和安徽工程大学启动基金项目(No.2012YQQ003)资助

Preparation and Theranostic Applications of Polymer-Inorganic Hybrid Nanospheres

Lin Ying*1,2, Ding Yin2,3, Jiang Xiqun*2   

  1. 1. School of Biology and Chemical Engineering, AnHui Polytechnic University, Wuhu 241000, China;
    2. College of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093;
    3. State Key Laboratory of Analytical Chemistry for Life Sciences, Nanjing 210093, China
  • Received:2013-07-01 Revised:2013-09-01 Online:2014-02-15 Published:2013-12-18
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No.51033002,51303003) and Talented Foundation of Anhui Polytechnic University (No.2012YQQ003)

目前,高分子-无机复合纳米微球因兼有高分子微球和无机纳米材料两者的性能优势而备受关注。其中,由可塑生物相容性的高分子与拥有特殊光、磁及电学性质的无机物组成的纳米微球,在疾病诊疗中应用前景广阔。功能高分子同多种无机粒子、活性分子可以复合形成多功能纳米微球,用于实现多模态成像诊断和可视化跟踪治疗。本文基于复合纳米微球的各种合成方法介绍,阐述了它们在靶向药物传输、生物成像、细胞分离、生物传感及热疗等诊疗领域的应用。同时,对纳米医疗领域前景和挑战进行了评述,为构建新型诊疗复合纳米微球提供有用信息。

Polymer-inorganic hybrid nanospheres have attracted increasing attention in recent years because of the synergic properties arising from both the polymeric nanospheres and inorganic nanomaterials. Especially, the nanospheres composed by the polymers that have desirable plasticity and biocompatibility, and the inorganic materials with unique optical, magnetic and electric properties are greatly useful in diagnosis and therapy disease. The combinations of functional polymers, inorganic nanomaterials and bioactive molecules can offer synergetic multifunctional nanomedical platforms, which make it possible to accomplish multimodal imaging and monitoring therapy. This article provides a review on the synthetic methodologies for building hybrid nanospheres, and their applications in targeted drug delivery, bio-imaging, cell separation, biosensing and hyperthermia. Perspective and challenges in nanomedical fields are discussed to provide the reference information for development of novel theranostic hybrid nanospheres.

Contents
1 Introduction
2 Preparation of polymer-inorganic hybrid nanospheres
2.1 Encapsulation method
2.2 In situ synthesis of inorganic nanoparticles
2.3 Surface-initiated polymerization coated method
2.4 Hole-doping method
2.5 Layer-by-layer method
2.6 Film rehydration method
3 Theranostic applications of polymer-inorganic hybrid nanospheres
3.1 Magnetic resonance imaging
3.2 CT imaging and surface enhanced raman imaging
3.3 Optical imaging in vivo
3.4 Triggered drug release and monitoring of therapy
3.5 Targeted drug delivery and hyperthermia treatment
3.6 Photothermal therapy
3.7 Cell separation
4 Conclusion and outlook

中图分类号: 

()

[1] Allen T M, Cullis P R. Science, 2004, 303(5665): 1818.
[2] Boyer C, Whittaker M R, Bulmus V, Liu J, Davis T P. NPG Asia Mater., 2010, 2(1): 23.
[3] Fredin N J, Zhang J, Lynn D M. J. Control. Release, 2005, 106(1/2): 214.
[4] You J, Peng C. Macromol. Symp., 2004, 219(1): 147.
[5] Zezin A, Rogacheva V, Skobeleva V, Kabanov V. Polym. Adv. Technol., 2002, 13(10/12): 919.
[6] Shiotani A, Akiyama Y, Kawano T, Niidome Y, Mori T, Katayama Y, Niidome T. Bioconjugate Chem., 2010, 21(11): 2049.
[7] Huang Y F, Sefah K, Bamrungsap S, Chang H T, Tan W. Langmuir, 2008, 24(20): 11860.
[8] Wu X, He X, Wang K, Xie C, Zhou B, Qing Z. Nanoscale, 2010, 2(10): 2244.
[9] Guével X L, Hötzer B, Jung G, Schneider M. J. Mater. Chem., 2011, 21(9): 2974.
[10] Lin C J, Yang T, Lee C, Huang S H, Sperling R A, Zanella M, Li J K, Shen J, Wang H, Yeh H, Parak W J, Chang W H. ACS Nano, 2009, 3(2): 395.
[11] Jiang J, Gu H, Shao H, Devlin E, Papaefthymiou G C, Ying J Y. Adv. Mater., 2008, 20(23): 4403.
[12] Yu J, Patel S A, Dickson R M. Angew. Chem. Int. Ed., 2007, 46(12): 2028.
[13] Noguez C, Garzón I L. Chem. Soc. Rev., 2009, 38(3): 757.
[14] Medintz I L, Uyeda H T, Goldman E R, Mattoussi H. Nat. Mater., 2005, 4(6): 435.
[15] Al-Jamal W T, Al-Jamal K T, Tian B, Lacerda L, Bomans P H, Kostarelos K. ACS Nano, 2008, 2(3): 408.
[16] Gao X, Cui Y, Levenson R M, Chung L W K, Nie S. Nat. Biotechnol., 2004, 22(8): 969.
[17] Kairdolf B A, Mancini M C, Smith A M, Nie S. Anal. Chem., 2008, 80(8): 3029.
[18] Wu X, Liu H, Liu J, Haley K N, Treadway J A, Larson J P, Ge N, Peale F, Bruchez M P. Nat. Biotechnol., 2003, 21(1): 41.
[19] Jun Y W, Huh Y M, Choi J S, Lee J H, Song H T, Kim S, Yoon S, Kim K S, Shin J S, Suh J S, Cheon J. J. Am. Chem. Soc., 2005, 127(16): 5732.
[20] Langer R S. Nature, 1998, 392(6679): 5.
[21] Tarkanyi I, Horváth A, Szatmari I, Eizert H, Vámosi G, Damjanovich S, Séqal-Bendirdjian E, Aradi J. FEBS Lett., 2005, 579(6): 1411.
[22] Wu W, Mitra N, Yan E, Zhou S. ACS Nano, 2010, 4(8): 4831.
[23] Song J, Zhou J, Duan H. J. Am. Chem. Soc., 2012, 134(32): 13458.
[24] Cho E C, Glaus C, Chen J, Welch M J, Xia Y. Cell, 2010, 16(12): 561.
[25] Yigit M V, Zhu L, Ifediba M A, Zhang Y, Carr K, Moore A, Medarova Z. ACS Nano, 2011, 5(2): 1056.
[26] Yu M K, Jeong Y Y, Park J, Park S, Kim J W, Min J J, Kim K, Jon S. Angew. Chem. Int. Ed., 2008, 47(29): 5362.
[27] Sheng W, Kim S, Lee J, Kim S W, Jensen K, Bawendi M G. Langmuir, 2006, 22(8): 3782.
[28] Ding Y, Hu Y, Zhang L, Chen Y, Jiang X. Biomacromolecules, 2006, 7(6): 1766.
[29] Guo R, Zhang L, Qian H, Li R, Jiang X, Liu B. Langmuir, 2010, 26(8): 5428.
[30] Lin Y, Yao W, Cheng Y, Qian H, Wang X, Ding Y, Wu W, Jiang X. J. Mater. Chem., 2012, 22(12): 5684.
[31] Wu W, Aiello M, Zhou T, Berliner A, Baneriee P, Zhou S. Biomaterials, 2010, 31(11): 3023.
[32] Guo R, Zhang L, Zhu Z, Jiang X. Langmuir, 2008, 24(7): 3459.
[33] Guo R, Li R, Li X, Zhang L, Jiang X, Liu B. Small, 2009, 5(6): 709.
[34] Boyer C, Bulmus V, Priyanto P, Teoh W Y, Amal R, Davis T P. J. Mater. Chem., 2009, 19(1): 111.
[35] Kim D J, Kang S M, Kong B, Kim W, Paik H, Choi H, Choi I S. Macromol. Chem. Phys., 2005, 206(19): 1941.
[36] Tian J, Feng Y K, Xu Y S. Macromol. Res., 2006, 14(2): 209.
[37] Wang L, Neoh K G, Kang E T, Shuter B, Wang S. Adv. Funct. Mater., 2009, 19(16): 2615.
[38] Xiao Z, Yang K, Liang H, Lu J. J. Polym. Sci. Part A: Polym. Chem., 2010, 48(3): 542.
[39] Wang Y, Teng X, Wang J, Yang H. Nano Lett., 2003, 3(6): 789.
[40] Nuβ S, Böttcher H, Wurm H, Hallensleben M L. Angew. Chem. Int. Ed., 2001, 40(21): 4016.
[41] Gong Y, Gao M, Wang D, Möhwald H. Chem. Mater., 2005, 17(10): 2648.
[42] Han M, Gao X, Su J Z, Nie S. Nat. Biotechnol., 2001, 19(7): 631.
[43] Jiang W, Mardyani S, Fischer H, Chan W C W. Chem. Mater., 2006, 18(4): 872.
[44] Hao E, Lian T. Chem. Mater., 2000, 12(11): 3392.
[45] Liu R, Liu B, Guan G, Jiang C, Zhang Z. Chem. Commun., 2012, 48(75): 9421.
[46] Wang G, Su X. Analyst, 2011, 136(9): 1783.
[47] Discher B M, Won Y, Ege D S, Lee J, Bates F S, Discher D E, Hammer D A. Science, 1999, 284(5417): 1143.
[48] Tam N C M, McVeigh P Z, MacDonald T D, Farhadi A, Wilson B C, Zheng G. Bioconjugate Chem., 2012, 23(9): 1726.
[49] Kotsuchibashi Y, Ebara M, Aoyagi T, Narain R. Polym. Chem., 2012, 3(6): 2545.
[50] Yan E, Ding Y, Chen C, Li R, Hu Y, Jiang X. Chem. Commun., 2009, 19: 2718.
[51] Sun C, Du K, Fang C, Bhattarai N, Veiseh O, Kievit F, Stephen Z, Zhang M. ACS Nano, 2010, 4(4): 2402.
[52] Kim D, Park S, Lee J H, Jeong Y Y, Jon S. J. Am. Chem. Soc., 2007, 129(24): 7661.
[53] Rabin O, Perez J M, Grimm J, Wojtkiewicz G, Weissleder R. Nat. Mater., 2006, 5(2): 118.
[54] Chen L, Jiang L, Wang Y, Qian J, He S. J. Biomed. Biotechnol., 2010, 11(6): 417.
[55] Jiang W, Papa E, Fischer H, Mardyani S, Chan W C W. Trends Biotechnol., 2004, 22(12): 607.
[56] Huang J, Xie J, Chen K, Bu L, Lee S, Cheng Z, Li X, Chen X. Chem. Commun., 2010, 46(36): 6684.
[57] Wang H, Lin C J, Lee C, Lin Y, Tseng Y, Hsieh C, Chen C, Tsai C, Yeh H. ACS Nano, 2011, 5(6): 4337.
[58] Koo H, Huh M S, Sun I, Yuk S H, Choi K, Kim K, Kwon I C. Acc. Chem. Res., 2011, 44(10): 1018.
[59] Mu B, Liu P, Du P, Dong Y, Lu C. J. Polym. Sci. Part A: Polym. Chem., 2011, 49(9): 1969.
[60] Sanson C, Diou O, Thévenot J, Ibarboure E, Soum A, Brlet A, Sandre O, Lecommandoux S. ACS Nano, 2011, 5(2): 1122.
[61] Jordan A, Scholz R, Maier-Hauff K, Johannsen M, Wust P, Nadobny J, Felix R. J. Magn. Magn. Mater., 2001, 225(1/2): 118.
[62] Moroz P, Jones S K, Gray B N. J. Surg. Oncol., 2002, 80(3): 149.
[63] Chen R, Zheng X, Qian H, Wang X, Wang J, Jiang X. Biomater. Sci., 2013, 1(3): 285.
[64] Choi W I, Kim J Y, Kang C, Byeon C C, Kim Y H, Tae G. ACS Nano, 2011, 5(3): 1995.
[65] Wedemeyer N, Pötter T. Clin. Genet., 2001, 60(1): 1.
[66] Lu W, Singh A K, Khan S A, Senapati D, Yu H, Ray P C. J. Am. Chem. Soc., 2010, 132(51): 18103.
[67] Li W, Sun C, Wang F, Wang Y, Zhai Y, Liang M, Wang J, Sun F. Nano Lett., 2013, 13(6): 2477.
[68] Zhang J, Yuan Z, Wang Y, Chen W, Guo F L, Cheng S, Zhuo R, Zhang X. J. Am. Chem. Soc., 2013, 135(13): 5068.
[69] 杜凯(Du K), 朱艳红(Zhu Y H ), 徐辉碧(Xu H B), 杨祥良(Yang X L). 化学进展(Progress in Chemistry), 2011, 23(11): 2287.
[70] 周慧睿(Zhou H R), 陶可(Tao K), 孙康(Sun K). 化学进展(Progress in Chemitry), 2011, 23(6): 1100.

[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 张婉萍, 刘宁宁, 张倩洁, 蒋汶, 王梓鑫, 张冬梅. 刺激响应性聚合物微针系统经皮药物递释[J]. 化学进展, 2023, 35(5): 735-756.
[3] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[4] 傅安辰, 毛彦佳, 王宏博, 曹志娟. 基于二氧杂环丁烷骨架的化学发光探针发展和应用研究[J]. 化学进展, 2023, 35(2): 189-205.
[5] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[6] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[7] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[8] 冯海弟, 赵璐, 白云峰, 冯锋. 纳米金属有机框架在肿瘤靶向治疗中的应用[J]. 化学进展, 2022, 34(8): 1863-1878.
[9] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[10] 陈晓峰, 王开元, 梁芳铭, 姜睿祺, 孙进. 外泌体递药系统及其在肿瘤治疗中的应用[J]. 化学进展, 2022, 34(4): 773-786.
[11] 钟琴, 周帅, 王翔美, 仲维, 丁晨迪, 傅佳骏. 介孔二氧化硅基智能递送体系的构建及其在各类疾病治疗中的应用[J]. 化学进展, 2022, 34(3): 696-716.
[12] 郭玲香, 李菊平, 刘志洋, 李全. 聚集诱导发光型光敏剂用于线粒体靶向光动力治疗[J]. 化学进展, 2022, 34(11): 2489-2502.
[13] 王振, 李曦, 栗园园, 王其, 卢晓梅, 范曲立. 可激活的NIR-Ⅱ探针用于肿瘤成像[J]. 化学进展, 2022, 34(1): 198-206.
[14] 祝梓琳, 范中贤, 缪梦昭, 黄怀义. 铱(Ⅲ)配合物乏氧肿瘤光动力治疗[J]. 化学进展, 2021, 33(9): 1473-1481.
[15] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.