English
新闻公告
More
化学进展 2014, Vol. 26 Issue (0203): 358-365 DOI: 10.7536/PC130704 前一篇   后一篇

所属专题: 计算化学

• 综述与评论 •

嵌段共聚物在选择性溶剂中自组装过程的计算机模拟

盛玉萍1,2, 闫南2, 朱雨田*2, 安健*1   

  1. 1. 吉林大学材料科学与工程学院 长春 130022;
    2. 中国科学院长春应用化学研究所 长春 130022
  • 收稿日期:2013-07-01 修回日期:2013-07-01 出版日期:2014-02-15 发布日期:2013-12-18
  • 通讯作者: 朱雨田,e-mail:ytzhu@ciac.ac.cn;安健,e-mail:anjian@jlu.edu.cn E-mail:ytzhu@ciac.ac.cn;anjian@jlu.edu.cn

Computer Simulation of Self-Assembly of Block Copolymers in Selective Solvent

Sheng Yuping1,2, Yan Nan2, Zhu Yutian*2, An Jian*1   

  1. 1. College of Materials Science and Engineering, Jilin University, Changchun 130022;
    2. Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
  • Received:2013-07-01 Revised:2013-07-01 Online:2014-02-15 Published:2013-12-18

嵌段共聚物由于各嵌段性质不同,在选择性溶剂中能够自发地组装形成众多形态结构各异的纳米结构,如纳米级的球状、棒状、环状、片层状、囊泡及复合胶束等。这些胶束结构在药物传输、催化、电子信息等众多领域都有潜在的应用价值。通过计算机模拟可以在线监控嵌段共聚物的组装过程、揭示其组装机理,明确各种因素对组装结构的影响规律,为实验研究提供思路和理论支持,因此越来越受到人们的广泛关注。本文主要综述了通过计算机模拟对嵌段共聚物在选择性溶剂中自组装研究的一些最新进展,详细讨论了影响嵌段共聚物自组装过程和胶束形貌的各种因素,并对这个领域未来的发展进行了展望。

Due to the difference in the property of each block, block copolymers can self-assemble into various nanoscale morphologies spontaneously, including sphere, rod, ring, lamella, vesicle and compound micelle etc. These micelles have potential applications in nanotechnology such as drug delivery, catalysts, electronic information and so on. Recently, the computer simulations are widely used to monitor the process of self-assembly, reveal the mechanism of self-assembly, and illuminate the influence of various control factors on micellar structures, which can provide mentality and theoretical support for the experimental research. This review mainly summarizes the latest progresses in computer simulation of self-assembly of block copolymers in selective solvent, and discussed various effects on the micellar morphologies and the process of self-assembly. Moreover, the future development in this filed is also discussed in this review.

Contents
1 Introduction
2 Self-assembly of AB diblock copolymers in selective solvents
3 Self-assembly of ABA triblock copolymers in selective solvents
3.1 Self-assembly of ABA triblock copolymers in A-selective solvents
3.2 Self-assembly of ABA triblock copolymers in B-selective solvents
4 Self-assembly of ABC triblock copolymers in selective solvents
4.1 Self-assembly of ABC triblock copolymers in A-and C-selective solvents
4.2 Self-assembly of ABC triblock copolymers in C-selective solvents
4.3 Self-assembly of ABC miktoarm star terpolymers in selective solvents
5 Self-assembly of mixtures of copolymers in selective solvents
6 Conclusion and outlook

中图分类号: 

()

[1] Matsen M W. J. Phys.: Condens. Matter, 2002, 14: R21.
[2] Zhang L F, Eisenberg A. Science, 1995, 268: 1728.
[3] Zhang L, Eisenberg A. Macromolecules, 1996, 29: 8805.
[4] Yu K, Zhang L, Eisenberg A. Langmuir, 1996, 12: 5980.
[5] Zhang L F, Eisenberg A. Polym. Adv. Technol., 1998, 9: 677.
[6] Pochan D J, Chen Z Y, Cui H G, Hales K, Qi K, Wooley K L. Science, 2004, 306: 94.
[7] Li Z B, Kesselman E, Talmon Y, Hillmyer M A, Lodge T P. Science, 2004, 306: 98.
[8] Zhu J T, Liao Y G, Jiang W. Langmuir, 2004, 20: 3809.
[9] Discher D E, Eisenberg A. Science, 2002, 297: 967.
[10] Li Z, Chen Z, Cui H, Hales K, Qi K, Wooley K L, Pochan D J. Langmuir, 2005, 21: 7533.
[11] 周俊峰(Zhou J F), 王立(Wang L), 陈涛(Chen T), 王苇(Wang W).化学进展(Progress in Chemistry), 2005, 17(6): 1102.
[12] Lodge T P, Hillmyer M A, Zhou Z, Talmon Y. Macromolecules, 2004, 37: 6680.
[13] Kubowicz S, Baussard J F, Lutz J F, Thünemann A F, von Berlepsch H, Laschewsky A. Angew. Chem. Int. Ed., 2005, 44: 5262.
[14] Edmonds W F, Li Z, Hillmyer M A, Lodge T P. Macromolecules, 2006, 39: 4526.
[15] Ma L, Eisenberg A. Langmuir, 2009, 25: 13730.
[16] Azzam T, Eisenberg A. Langmuir, 2010, 26: 10513.
[17] Jang S G, Audus D J, Klinger D, Krogstad D V, Kim B J, Cameron A, Kim S W, Delaney K T, Hur S M, Killops K L, Fredrickson G H, Kramer E J, Hawker C J. J. Am. Chem. Soc., 2013, 135: 6649.
[18] Savic R, Luo L, Eisenberg A, Maysinger D. Science, 2003, 300: 615.
[19] Allen C, Maysinger D, Eisenberg A. Colloids Surf. B, 1999, 16: 3.
[20] Bronich T K, Vinogradov S V, Kabanov A V. Nano Lett, 2001, 1: 535.
[21] Lodge T P, Rasdal A, Li Z B, Hillmyer M A. J. Am. Chem. Soc., 2005, 127: 17608.
[22] Wang G C, Henselwood F, Liu G J. Langmuir, 1998, 14: 1554.
[23] Henselwood F, Wang G C, Liu G J. J. Appl. Polym. Sci., 1998, 70: 397.
[24] Yaroslavov A A, Melik-Nubarov N S, Menger F M. Acc. Chem. Res., 2006, 39: 702.
[25] Park M, Harrison C, Chaikin P M, Register R A, Adamson D H. Science, 1997, 276: 1401.
[26] Shen H W, Eisenberg A. J. Phys. Chem. B, 1999, 103: 9473.
[27] Won Y Y, Davis H T, Bates F S. Science, 1999, 283: 960.
[28] Won Y Y, Davis H T, Bates F S. Macromolecules, 2003, 36: 953.
[29] He X H, Liang H J, Pan C Y. Phys. Rev. E, 2001, 63: 031804.
[30] Sun P, Yin Y, Li B, Chen T, Jin Q, Ding D, Shi A C. J. Chem. Phys., 2005, 122: 204905.
[31] Schillén K, Bryskhe K, Mel'nikova Y S. Macromolecules, 1999, 32: 6885.
[32] Du H B, Zhu J T, Jiang W. J. Phys. Chem. B, 2007, 111: 1938.
[33] Zhu J T, Yu H Z, Jiang W. Macromolecules, 2005, 38: 7492.
[34] Zhu J T, Jiang Y, Liang H J, Jiang W. J. Phys. Chem. B, 2005, 109: 8619.
[35] 樊娟娟(Fan J J), 韩媛媛(Han Y Y), 姜伟(Jiang W). 高等学校化学学报(Chemical Journal of Chinese Universities-Chinese), 2011, 32(7): 1651.
[36] Han Y Y, Yu H Z, Du H B, Jiang W. J. Am. Chem. Soc., 2010, 132: 1144.
[37] Jiang Y, Zhu J T, Jiang W, Liang H J. J. Phys. Chem. B, 2005, 109: 21549.
[38] Li X J, Deng M G, Liu Y, Liang H. J. Phys. Chem. B, 2008, 112: 14762.
[39] He P, Li X, Kou D, Deng M, Liang H. J. Chem. Phys., 2010, 132: 204905.
[40] 樊娟娟(Fan J J), 韩媛媛(Han Y Y), 姜伟(Jiang W). 化学学报(Acta Chimica Sinica), 2011, 69(19): 2341.
[41] Zhou Z, Chu B, Peiffer D G. Langmuir, 1995, 11: 1956.
[42] Giacomelli F C, Riegel I C, Petzhold C L, da Silveira N P, Štěpnek P. Langmuir, 2009, 25: 731.
[43] Agrawal S K, Sanabria-DeLong N, Tew G N, Bhatia S R. Macromolecules, 2008, 41: 1774.
[44] Kim S H, Jo W H. Macromolecules, 2001, 34: 7210.
[45] Kong W X, Li B H, Jin Q H, Ding D T, Shi A C. Langmuir, 2010, 26: 4226.
[46] Liu F T, Eisenberg A. J. Am. Chem. Soc., 2003, 125: 15059.
[47] Stoenescu R, Meier W. Chem. Commun., 2002, 3016.
[48] Njikang G, Han D, Wang J, Liu G J. Macromolecules, 2008, 41: 9727.
[49] Cui J, Jiang W. Langmuir, 2010, 26: 13672.
[50] Zhu J T, Jiang W. Macromolecules, 2005, 38: 9315.
[51] Moughton A O, Hillmyer M A, Lodge T P. Macromolecules, 2011, 45: 2.
[52] Ma Z W, Jiang W. J. Polym. Sci. Part. B: Polym. Phys., 2009, 47: 484.
[53] Ma Z W, Yu H Z, Jiang W. J. Phys. Chem. B, 2009, 113: 3333.
[54] Jiang T, Wang L Q, Lin S L, Lin J P, Li Y L. Langmuir, 2011, 27: 6440.
[55] Zhu Y T, Yu H Z, Wang Y M, Cui J, Kong W X, Jiang W. Soft Matter, 2012, 8: 4695.
[56] Kong W X, Jiang W, Zhu Y T, Li B H. Langmuir, 2012, 28: 11714.
[57] Lord S J, Sheiko S S, LaRue L, Lee H I, Matyjaszewski K. Macromolecules, 2004, 37: 4235.
[58] Li Z, Hillmyer M A, Lodge T P. Nano Lett., 2006, 6: 1245.
[59] Li Z, Hillmyer M A, Lodge T P. Langmuir, 2006, 22: 9409.
[60] Zhu Y T, Li R K Y, Jiang W. Chem. Phys., 2006, 327: 137.
[61] Xia J, Zhong C L. Macromol. Rapid Commun., 2006, 27: 1110.
[62] Chou S H, Tsao H K, Sheng Y J. J. Chem. Phys., 2006, 125: 194903.
[63] Zhulina E B, Borisov O V. Macromolecules, 2008, 41: 5934.
[64] Kong W X, Li B H, Jin Q H, Ding D T, Shi A C. J. Am. Chem. Soc., 2009, 131: 8503.
[65] Zhang L F, Eisenberg A. J. Polym. Sci. Part. B: Polym. Phys., 1999, 37: 1469.
[66] Hu J W, Liu G J. Macromolecules, 2005, 38: 8058.
[67] Salim N V, Hameed N, Guo Q. J. Polym. Sci. Part. B-Polym. Phys., 2009, 47: 1894.
[68] Li Z B, Hillmyer M A, Lodge T P. Macromolecules, 2006, 39: 765.
[69] Hsu C H, Kuo S W, Chen J K, Ko F H, Liao C S, Chang F C. Langmuir, 2008, 24: 7727.
[70] Salim N V, Guo Q. J. Phys. Chem. B, 2011, 115: 9528.
[71] Zhu J T, Hayward R C. Macromolecules, 2008, 41: 7794.
[72] Yan N, Yang X P, Zhu Y T, Xu J P, Sheng Y P. Macromol. Chem. Phys., 2012, 213: 2261.
[73] Gohy J F, Khousakoun E, Willet N, Varshney S K, Jérme R. Macromol. Rapid Commun., 2004, 25: 1536.
[74] Xu G K, Feng X Q, Li Y. J. Phys. Chem. B, 2010, 114: 1257.
[75] Zhuang Y, Lin J, Wang L, Zhang L. J. Phys. Chem. B, 2009, 113: 1906.
[76] Han Y Y, Jiang W. J. Phys. Chem. B, 2011, 115: 2167.
[77] Han Y Y, Cui J, Jiang W. J. Phys. Chem. B, 2012, 116: 9208.
[78] Sheng Y P, Yang X P, Yan N, Zhu Y T. Soft Matter, 2013, 9: 6254.
[79] Xin J, Liu D, Zhong C. J. Phys. Chem. B, 2009, 113: 9364.
[80] Zhu Y T, Yang X P, Kong W X, Sheng Y P, Yan N. Soft Matter, 2012, 8: 11156.

[1] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[2] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[3] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[4] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[5] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[6] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[7] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[8] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[9] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[10] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[11] 智康康, 杨鑫. 天然产物凝胶及其凝胶质[J]. 化学进展, 2019, 31(9): 1314-1328.
[12] 林代武, 邢起国, 王跃飞, 齐崴, 苏荣欣, 何志敏. 多肽超分子手性自组装与应用[J]. 化学进展, 2019, 31(12): 1623-1636.
[13] 刘耀华, 刘育. 基于偶氮功能基的光控超分子组装[J]. 化学进展, 2019, 31(11): 1528-1539.
[14] 徐子悦, 张运昌, 林佳乐, 王辉, 张丹维, 黎占亭. 药物输送体系构筑中的超分子组装策略[J]. 化学进展, 2019, 31(11): 1540-1549.
[15] 郭家田, 卢玉超, 毕晨, 樊佳婷, 许国贺, 马晶军. 刺激响应型肽自组装及其应用[J]. 化学进展, 2019, 31(1): 83-93.