English
新闻公告
More
化学进展 2014, Vol. 26 Issue (01): 178-192 DOI: 10.7536/PC130662 前一篇   后一篇

• 综述与评论 •

同步辐射红外光谱成像技术对细胞的研究

凌盛杰, 邵正中, 陈新*   

  1. 聚合物分子工程国家重点实验室 复旦大学高分子科学系 先进材料实验室 上海 200433
  • 收稿日期:2013-06-01 修回日期:2013-09-01 出版日期:2014-01-15 发布日期:2013-11-08
  • 通讯作者: 陈新,e-mail:chenx@fudan.edu.cn E-mail:chenx@fudan.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.10979022)资助

Application of Synchrotron FTIR Imaging for Cells

Ling Shengjie, Shao Zhengzhong, Chen Xin*   

  1. State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
  • Received:2013-06-01 Revised:2013-09-01 Online:2014-01-15 Published:2013-11-08
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 10979022)

同步辐射红外显微光谱技术凭借其超高亮度和高空间分辨率的优势,已经在多学科领域中取得了大量的研究成果。特别是在生物医学领域,同步辐射红外显微光谱可以对无染色、无标记的生物样品进行无损检测并可获得生物分子的大量结构信息,因此得到广泛应用。随着同步辐射红外显微光谱技术的发展,生物化学家和光谱学家已经将研究的重点从组织层次的红外光谱成像(组织红外光谱成像)扩展到细胞层次的红外光谱成像(细胞红外光谱成像),并在近十年的研究中取得了大量的研究成果,但同时也暴露出一些问题,例如(1)细胞或介质中的水在红外光谱酰胺Ⅰ谱带具有很强的吸收;(2)不平整的细胞表面会导致红外光谱中产生Mie散射;(3)细胞红外光谱的复杂性和不确定性会影响数据分析的有效性和准确性。另一方面,生化学家和光谱学家也为解决这些问题采取了许多有用的策略。因此,本综述首先从样品制备、实验设计以及数据分析等方面对最近十年来细胞同步辐射红外光谱成像技术取得的成果进行了总结,随后介绍了目前细胞红外成像技术面临的问题以及解决策略。我们相信,通过多束同步辐射红外光与焦平面阵列(FPA)探测器的结合,同步辐射红外光谱成像技术在对细胞的结构和功能研究中以及其他领域不同材料的研究中都会逐步显示出独特的作用。

Thanks to the ultra-high brightness and high spatial resolution of synchrotron infrared light source, synchrotron radiation based Fourier-transform infrared (SR-FTIR) microspectroscopy is widely used in multidisciplinary field. Especially in the biomedical field, SR-FTIR has been widely employed in the structural and functional characterization of unstained and unlabeled biomolecules as a non-destructive technique. In the recent ten years, with the development of SR-FTIR microspectroscopic technique, biochemists and spectral scientists have expanded their interests from the tissue level FTIR imaging (tissue FTIR imaging, which normally focus on imaging a tissue section) to single cell level FTIR imaging (cell FTIR imaging, which focus on imaging of a single functional or live cell). However, there are several problems need to be overcome in cell FTIR imaging. For example, (1) water in cell and/or in medium has strong absorption in amide Ⅰ band; (2) uneven surface of cell leads to Mie scattering of FTIR spectra; (3) complexity and uncertainty of FTIR spectra of cell affect the validity and accuracy of the data analysis. On the other hand, biochemists and spectral scientists have designed fruitful strategies to solve these problems. Therefore, we summarized the studies about cell SR-FTIR imaging in the past ten years in this review. We firstly describe the sample preparation, experimental design and data analysis methods in these published works, and then put forward the problems and the corresponding solutions on cell SR-FTIR imaging. We believe with the development of multibeam synchrotron source/focal plane array (FPA) system, SR-FTIR imaging will become a very promising tool to detect structures and functions not only for cells, but also for many other materials in different fields.

Contents
1 Introduction
2 Structural information from FTIR spectra of cells
3 Sample preparation and experimental design
3.1 ATR-FTIR imaging on cells
3.2 Transmittance FTIR imaging on cells
4 Data analysis methods
4.1 Univariate imaging
4.2 Multivariate imaging
5 Experimental problems and corresponding solving strategies
6 Applications of synchrotron FTIR imaging on cells
6.1 Study of protein phosphorylation in living single PC12 cells with synchrotron FTIR microspectro-scopy
6.2 Real-time monitoring of bacterial activity in biofilms with synchrotron FTIR microspectro-scopy
7 Outlook

中图分类号: 

()

[1] Wong P T T, Rigas B. Appl. Spectrosc., 1990, 44: 1715.
[2] Wong P T T, Papavassiliou E D, Rigas B. Appl. Spectrosc., 1991, 45: 1563.
[3] Wong P T T, Wong R K, Caputo T A, Godwin T A, Rigas B. PNAS, 1991, 88: 10988.
[4] Jamin N, Dumas P, Moncuit J, Fridman W H, Teillaud J L, Carr G L, Williams G P. PNAS, 1998, 95: 4837.
[5] Miller L M, Dumas P. Biochim. Biophys. Acta-Biomembr., 2006, 1758: 846.
[6] 严佳萍(Yan J P), 邵正中(Shao Z Z), 陈新(Chen X), 黄郁芳(Huang Y F). 化学进展(Progress in Chemistry), 2008, 20(11): 1768.
[7] Petibois C, Piccinini M, Guidi M C, Marcelli A. J. Synchrot. Radiat., 2010, 17: 1.
[8] Carr G L, Hanfland M, Williams G P. Rev. Sci. Instrum., 1995, 66: 1643.
[9] Carr G L, Reffner J A, Williams G P. Rev. Sci. Instrum., 1995, 66: 1490.
[10] Reffner J A, Martoglio P A, Williams G P. Rev. Sci. Instrum., 1995, 66: 1298.
[11] 凌盛杰(Ling S J), 黄郁芳(Huang Y F), 黄蕾(Huang L), 邵正中(Shao Z Z), 陈新(Chen X). 化学进展(Progress in Chemistry), 2013, 25(5): 821.
[12] Martin M C, Schade U, Lerch P, Dumas P. Trac-Trend Anal. Chem., 2010, 29: 453.
[13] Cotte M, Dumas P, Taniguchi Y, Checroun E, Walter P, Susini J. C. R. Phys., 2009, 10: 590.
[14] Marcelli A, Cricenti A, Kwiatek W M, Petibois C. Biotechnol. Adv., 2012, 30: 1390.
[15] Quaroni L, Zlateva T. Analyst, 2011, 136: 3219.
[16] Leslie M. Science, 2011, 331: 24.
[17] Arriaga E A. Anal. Bioanal. Chem., 2009, 393: 73.
[18] Quaroni L, Zlateva T, Bedolla D, Massaro S, Torre V. ChemPhysChem, 2008, 9: 1380.
[19] Reece J B, Urry L A, Cain M L, Wasserman S A, Minorsky P V, Jackson R B. Campbell Biology. 9th ed. San Francisco: Benjamin Cummings, 2010. 92.
[20] Miller L M, Dumas P. Curr. Opin. Struct. Biol., 2010, 20: 649.
[21] Walther F J, DavidCu R, Leung C, Bruni R, HernandezJuviel J, Gordon L M, Waring A J. Pediatr. Res., 1996, 39: 938.
[22] Dumas P, Miller L. J. Biol. Phys., 2003, 29: 201.
[23] Naumann D. Encyclopedia of Analytical Chemistry(ed Mayers R A). Weinheim: John Wiely & Sons Ltd, 2002. 102.
[24] Kazarian S G, Chan K L A. Analyst, 2013, 138: 1940.
[25] Kuimova M, Chan K L A, Kazarian S G. Appl. Spectrosc., 2009, 63: 164.
[26] Tobin M J, Puskar L, Barber R L, Harvey E C, Heraud P, Wood B R, Bambery K R, Dillon C T, Munro K L. Vib. Spectrosc., 2010, 53: 34.
[27] Nasse M J, Ratti S, Giordano M, Hirschmugl C J. Appl. Spectrosc., 2009, 63: 1181.
[28] Holman H Y N, Miles R, Hao Z, Wozei E, Anderson L M, Yang H. Anal. Chem., 2009, 81: 8564.
[29] Trevisan J, Angelov P P, Carmichael P L, Scott A D, Martin F L. Analyst, 2012, 137: 3202.
[30] Jackson M, Mantsch H H. Crit. Rev. Biochem. Mol. Biol., 1995, 30: 95.
[31] Lasch P, Haensch W, Naumann D, Diem M. Biochim. Biophys. Acta-Mol. Basis Dis., 2004, 1688: 176.
[32] Lasch P, Diem M, Hansch W, Naumann D. J. Chemom., 2006, 20: 209.
[33] Diem M, Matthaus C, Chernenko T, Romeo M J, Miljkovic M, Bird B, Schubert J, Papamarkakis K, Laver N. Infraredand Raman Spectroscopic Imaging(eds Salzer R, Siesler H W). Weinheim: Wiley-VCH, 2009. 173.
[34] Wolfgang K H, Leopold S. Applied Multivariate Statistical Analysis. 3rd ed. Heidelberg: Springer, 2012. 269.
[35] Rosi F, Federici A, Brunetti B G, Sgamellotti A, Clementi S, Miliani C. Anal. Bioanal. Chem., 2011, 399: 3133.
[36] Venyaminov S Y, Prendergast F G. Anal. Biochem., 1997, 248: 234.
[37] Miljkovic M, Romeo M, Matthaus C, Diem M. Biopolymers, 2004, 74: 172.
[38] Mossa D A, Keeseb M, Pepperkok R. Vib. Spectrosc., 2005, 38: 185.
[39] Kotting C, Gerwert K. ChemPhysChem, 2005, 6: 881.
[40] Holman H Y N, Wozei E, Lin Z, Comolli L R, Ball D A, Borglin S, Fields M W, Hazen T C, Downing K H. PNAS, 2009, 106: 12599.
[41] 陈新(Chen X), 周丽(Zhou L), 邵正中(Shao Z Z), 周平(Zhou P), Knight D P, Vollrath F. 化学学报(Acta Chimica Sinica), 2003, 61(4): 625.
[42] Chen X, Shao Z Z, Knight D P, Vollrath F. Proteins, 2007, 68: 223.
[43] Chen X, Knight D P, Shao Z Z. Soft Matter, 2009, 5: 2777.
[44] Wetzel D L, Slatkin D N, Levine S M. Cell Mol. Biol., 1998, 44: 15.
[45] Petibois C, Cestelli-Guidi M, Piccinini M, Moenner M, Marcelli A. Anal. Bioanal. Chem., 2010, 397: 2123.
[46] Matthaus C, Bird B, Miljkovic M, Chernenko T, Romeo M, Diem M. Method Cell Biol., 2008, 89: 275.
[47] Nasse M J, Bellehumeur B, Ratti S, Olivieri C, Buschke D, Squirrell J, Eliceiri K, Ogle B, Patterson C S, Giordano M, Hirschmugl C J. Vib. Spectrosc., 2012, 60: 10.
[48] Hirschmugl C J, Gough K M. Appl. Spectrosc., 2012, 66: 475.
[49] Kohler A, Sule-Suso J, Sockalingum G D, Tobin M, Bahrami F, Yang Y, Pijanka J, Dumas P, Cotte M, van Pittius D G, Parkes G, Martens H. Appl. Spectrosc., 2008, 62: 259.
[50] Bassan P, Byrne H J, Bonnier F, Lee J, Dumas P, Gardner P. Analyst, 2009, 134: 1586.
[51] Bassan P, Kohler A, Martens H, Lee J, Jackson E, Lockyer N, Dumas P, Brown M, Clarke N, Gardner P. J. Biophotonics, 2010, 3: 609.
[52] Bassan P, Kohler A, Martens H, Lee J, Byrne H J, Dumas P, Gazi E, Brown M, Clarke N, Gardner P. Analyst, 2010, 135: 268.
[53] Nasse M J, Walsh M J, Mattson E C, Reininger R, Kajdacsy-Balla A, Macias V, Bhargava R, Hirschmugl C J. Nat. Methods, 2011, 8: 413.
[54] Rak M, Del Bigio M R, Mai S, Westaway D, Gough K. Biopolymers, 2007, 87: 207.
[55] Kastyak-Ibrahim M Z, Nasse M J, Rak M, Hirschmugl C, Del Bigio M R, Albensi B C, Gough K M. Neuroimage, 2012, 60: 376.
[56] Stavitski E, Smith R J, Bourassa M W, Acerbo A S, Carr G L, Miller L M. Anal. Chem., 2013, 85: 3599.
[57] Hazen T C, Dubinsky E A, DeSantis T Z, Andersen G L, Piceno Y M, Singh N, Jansson J K, Probst A, Borglin S E, Fortney J L, Stringfellow W T, Bill M, Conrad M E, Tom L M, Chavarria K L, Alusi T R, Lamendella R, Joyner D C, Spier C, Baelum J, Auer M, Zemla M L, Chakraborty R, Sonnenthal E L, D'Haeseleer P, Holman H Y N, Osman S, Lu Z, Van Nostrand J D, Deng Y, Zhou J Z, Mason O U. Science, 2010, 330: 204.
[58] Jilkine K, Gough K M, Julian R, Kaminskyj S G W. J. Inorg. Biochem., 2008, 102: 540.
[59] Heraud P, Wood B R, Tobin M J, Beardall J, McNaughton D. FEMS Microbiol. Lett., 2005, 249: 219.
[60] Holman H N, Martin M C. Blakely E A, Bjornstad K, McKinney W R. Biopolymers, 2000, 57: 329.
[61] Miklossy J, Kis A, Radenovic A, Miller L, Forro L, Martins R, Reiss K, Darbinian N, Darekar P, Mihaly L, Khalili K. Neurobiol Aging, 2006, 27: 228.
[62] Chen L, Holman H Y N, Hao Z, Bechtel H A, Martin M C, Wu C B, Chu S. Anal. Chem., 2012, 84: 4118.
[63] Walsh M J, Fellous T G, Hammiche A, Lin W R, Fullwood N J, Grude O, Bahrami F, Nicholson J M, Cotte M, Susini J, Pollock H M, Brittan M, Martin-Hirsch P L, Alison M R, Martin F L. Stem Cells, 2008, 26: 108.
[64] Tobin M J, Chesters M A, Chalmers J M, Rutten F J M, Fisher S E, Symonds I M, Hitchcock A, Allibone R, Dias-Gunasekara S. Faraday Discuss., 2004, 126: 27.
[65] Gazi E, Dwyer J, Lockyer N P, Miyan J, Gardner P, Hart C A, Brown M D, Clarke N W. Vib. Spectrosc., 2005, 38: 193.
[66] Gazi E, Lockyer N P, Vickerman J C, Gardner P, Dwyer J, Hart C A, Brown M D, Clarke N W, Miyan J. Appl. Surf. Sci., 2004, 231: 452.
[67] Manning G, Whyte D B, Martinez R, Hunter T, Sudarsanam S. Science, 2002, 298: 1912.
[68] Whitchurch C B, Tolker-Nielsen T, Ragas P C, Mattick J S. Science, 2002, 295: 1487.
[69] Holman H Y N, Bechtel H A, Hao Z, Martin M C. Anal. Chem., 2010, 82: 8757.
[70] Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R. Science, 2010, 328: 627.
[71] 费翔(Fei X). 复旦大学博士论文(Doctoral dissertation of Fudan Universtiy), 2013.
[72] Ling S J, Qi Z M, Knight D P, Shao Z Z, Chen X. Biomacromolecules, 2011, 12: 3344.
[73] Ling S J, Qi Z M, Knight D P, Huang Y F, Huang L, Zhou H, Shao Z Z, Chen X. Biomacromolecules, 2013, 14: 1885.
[74] Wang X, Chen X L, Qi Z M, Liu X C, Li W Z, Wang S Y. Spectrochim Acta A, 2012, 91: 285.
[75] 王欣(Wang X), 陈先良(Chen X L), 戚泽明(Qi Z M), 刘省存(Liu X C), 刘刚(Liu G), 黄大可(Huang D K), 田扬超(Tian Y C). 化学学报(Acta Chimica Sinica), 2011, 69: 1491.
[76] Wang X, Qi Z M, Liu X, Wang S, Li C, Liu G, Xiong Y, Li T, Tao J, Tian Y C. Cancer Epidemiol, 2010, 34: 453.
[77] Ling S J, Qi Z M, Knight D P, Shao Z Z, Chen X. Polym. Chem., 2013, 4, 5401.
[78] Wang X, Qi Z M, Wang S Y, Liu G, Gao H L, Tian Y C. Spectrochim. Acta A, 2011, 79: 1660.
[79] Zhou G Q, Shao Z Z, Knight D P, Yan J P, Chen X. Adv. Mater., 2009, 21: 366.
[80] Yan J P, Zhou G Q, Knight D P, Shao Z Z, Chen X. Biomacromolecules, 2010, 11: 1.
[81] Ling S J, Zhou L, Zhou W, Shao Z Z, Chen X. Mater. Lett., 2012, 81: 13.
[82] Zhou H, Shao Z Z, Chen X. Chinese J. Polym. Sci., 2014, 32: 29.

[1] 黄大一. 古生物化学中的凝聚态化学反应[J]. 化学进展, 2022, 34(7): 1626-1641.
[2] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[3] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.
[4] 张丹丹, 吴琪, 曲广波, 史建波, 江桂斌. 单细胞水生生物金属纳米颗粒的定量分析[J]. 化学进展, 2022, 34(11): 2331-2339.
[5] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[6] 冯迪, 王广华, 唐文来, 杨继全. 微流控阻抗流式细胞仪在单细胞检测中的应用[J]. 化学进展, 2021, 33(4): 555-567.
[7] 吴云雪, 张衡益, 刘育. 偶氮苯衍生物探针在乏氧细胞成像中的应用[J]. 化学进展, 2021, 33(3): 331-340.
[8] 官启潇, 郭和泽, 窦红静. 细胞膜修饰的纳米载体与肿瘤免疫治疗[J]. 化学进展, 2021, 33(10): 1823-1840.
[9] 谢嘉恩, 罗雨珩, 张黔玲, 张平玉. 金属配合物在双光子荧光探针中的应用研究[J]. 化学进展, 2021, 33(1): 111-123.
[10] 郭珊, 周翔. 循环肿瘤细胞体内检测技术及其应用研究[J]. 化学进展, 2021, 33(1): 1-12.
[11] 蔡乐斯, 夏梦婵, 李展平, 张四纯, 张新荣. 二次离子质谱生物成像[J]. 化学进展, 2021, 33(1): 97-110.
[12] 徐国华, 成凯, 王晨, 李从刚. 生物凝聚态物质的多层次结构表征[J]. 化学进展, 2020, 32(8): 1231-1239.
[13] 王阳, 黄楚森, 贾能勤. 监测细胞微环境及活性分子的有机小分子荧光探针[J]. 化学进展, 2020, 32(2/3): 204-218.
[14] 李悦, 李景虹. 基于CRISPR的生物分析化学技术[J]. 化学进展, 2020, 32(1): 5-13.
[15] 夏也, 苏喜, 陈李, 李顺波, 徐溢. 用于细胞检测的微电极传感器设计及传感分析[J]. 化学进展, 2019, 31(8): 1129-1135.