English
新闻公告
More
化学进展 2014, Vol. 26 Issue (0203): 270-276 DOI: 10.7536/PC130659 前一篇   后一篇

• 综述与评论 •

石墨烯-量子点复合材料的制备与应用

牛晶晶1,2, 高辉*1, 田万发1   

  1. 1. 兰州大学物理科学与技术学院 功能与环境材料研究所 兰州 730000;
    2. 北京大学纳米结构与低维物理实验室 北京 100871
  • 收稿日期:2013-06-01 修回日期:2013-10-01 出版日期:2014-02-15 发布日期:2013-12-18
  • 通讯作者: 高辉,e-mail:hope@lzu.edu.cn E-mail:hope@lzu.edu.cn
  • 基金资助:

    中央高校自由探索项目(No.lzujbky-2013-186)和甘肃省自然科学基金项目(No.1208RJYA005)资助

Synthesis and Applications of Graphene-Quantum Dot Composites

Niu Jingjing1,2, Gao Hui*1, Tian Wanfa1   

  1. 1. Functional and Environment Materials Research Institute, College of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China;
    2. Nanostructure and Low Dimensional Physics Laboratory, Peking University, Beijing 100871, China
  • Received:2013-06-01 Revised:2013-10-01 Online:2014-02-15 Published:2013-12-18
  • Supported by:

    The work was supported by the Fundamental Research Funds for the Central Universities (No.lzujbky-2013-186) and the Natural Science Foundation of Gansu Province(No.1208RJYA005)

石墨烯因其独特的物理化学性质以及潜在的巨大应用价值引起了越来越多的研究兴趣,但其特殊的零带隙结构却限制了它在光电领域的应用。半导体量子点因其特有的量子尺寸效应而表现出迷人的光学性能,已成功应用于生物标记及电化学等领域,但电子-空穴对易复合湮灭,导致电子迁移率较低,限制了其在光电转换方面的应用。石墨烯独特的结构和电子特性使其成为优秀的导电支架,可从量子点中捕获并输运电子,实现了电子空穴对的有效分离。石墨烯-量子点复合材料不仅具有石墨烯的高电子传输性能,而且具备量子点特殊结构产生的量子尺寸效应和边缘效应,二者复合后在纳米器件和光电器件等领域极具应用潜力。本文详细总结了近年来石墨烯-量子点复合材料的制备方法,包括相转移法、静电复合、水热和溶剂热法以及电化学法和微波辅助法等,并简要介绍了相关应用领域的研究进展,以期为石墨烯基纳米复合材料的发展研究提供相关的参考与依据。

Due to its unique physical and chemical properties and promising widespread application value, graphene has been attracting intensive research interest. However, it has been limited the applications in the field of optoelectronics due to its special structure of zero bandgap. Semiconductor quantum dots (QDs) exhibit the fascinating optical properties associated with its special quantum size effect. They have been successfully applied in biological detection and optoelectronic applications. But the recombination and annihilation between the electrons and the holes greatly restrict the QDs application in optoelectronic conversion because it lowers the electron conductivity and mobility. The special electronic properties and structures of graphene make it an excellent conductive scaffolds, which would capture and transport electrons from the excited QDs and also effectively separate the electron-hole pair. Therefore, graphene-QDs composites would be an good candidate for combining the advantages of two materials. Graphene-QDs composites not only inherit the high speed electron transport property of the intrinsic graphene, but also possess the quantum size effect and edge effect origining from the special structure of QDs, suggesting the potential applications in the fields of nanodevices and optoelectronics. In this paper, we summerized the synthetic methods of graphene-QDs composites, including the phase-transfer methods, electrostatic compound strategies, hydrothermal and solvothermal methods, electrochemical template method and the microwave-assisted ways. The brief introduction of the applications has also been presented, which would provide the reference for the research and development of graphene-based nanocomposites.

Contents
1 Introduction
2 Synthesis of graphene-quantum dot composites
2.1 Phase-transfer methods
2.2 Electrostatic compound strategies
2.3 Solvothermal methods
2.4 Hydrothermal methods
2.5 Electrochemical template method
2.6 Microwave-assisted ways
3 Applications of graphene-quantum dot composites
3.1 The applications in optoelectronic devices of graphene-quantum dot composites
3.2 The applications in photocatalysis of graphene-quantum dot composites
3.3 The applications in biosensing of graphene-quantum dot composites
4 Conclusion and outlook

中图分类号: 

()

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696): 666.
[2] Shioyama H, Akita T. Carbon, 2003, 41(1): 179.
[3] Viculis L M, Mack J J, Kaner R B. Science, 2003, 299 (5611): 1361.
[4] 李旭 (Li X), 赵卫峰 (Zhao W F), 陈国华 (Chen G H). 材料导报 (Materials Review), 2008, 22(8): 48.
[5] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L. Solid State Commun., 2008, 146 (9/10): 351.
[6] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K. Science, 2008, 320 (5881): 1308.
[7] Eda G, Fanchini G, Chhowalla M. Nat. Nanotechnol., 2008, 3(5): 270.
[8] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N. Nano Lett., 2008, 8(3): 902.
[9] Lee C G, Wei X D, Kysar J W, Hone J. Science, 2008, 321: 385.
[10] Wang X R, Ouyang Y J, Li X L, Wang H L, Guo J, Dai H J. Phys. Rev. Lett., 2008, 100(20): 206803.
[11] Blake P, Brimicombe PD, Nair R R. Nano Letters, 2008, 8 (6): 1704.
[12] Schedin F, Geim A K, Morozov S V, Hill E W, Katsnelson M I, Novoselov K S. Nature Materials, 2007, 6(9): 652.
[13] Stoller M D, Park S J, Zhu Y W, An J, Ruoff R S. Nano Lett., 2008, 8(10): 3498.
[14] Wang X, Zhi L, Mullen K. Nano Lett., 2008, 8 (1): 323.
[15] Liu Z F, Liu Q, Huang Y, Ma Y F, Yin S G, Zhang X Y, Sun W, Chen Y S. Adv. Mater., 2008, 20: 3924.
[16] Bruchez M J, Moronne M, Gin P, Weiss S, Weiss A P. Science, 1998, 281 (5385): 2013.
[17] Huynh W U, Dittmer J J, Alivisatos A P. Science, 2002, 295(5564): 2425.
[18] Morgan N Y, Leatherdale C A, Drndic M, Vitasov M, Kastner M C, Bawendi M. Phys. Rev. B, 2002, 66: 075331.
[19] Jarosz M V, Porter V J, Fisher B R, Kastner M A, Bawendi M G. Phys. Rev. B, 2004, 70(19): 195327.
[20] Huang Q, Gao L. Nanotechnology, 2004, 15: 1855.
[21] Robel I, Bunker B A, Kamat P V. Adv. Mater., 2005, 17: 2458.
[22] Sheeney-Haj-Ichia L, Basnar B, Willner I. Angew. Chem. Int. Ed., 2005, 44: 78.
[23] Sheeney-Haj-Ichia L, Wasserman J, Willner I. Adv. Mater., 2002, 14(18): 1323.
[24] Granot E, Patolsky F, Willner I. J. Phys. Chem. B, 2004, 108: 5875.
[25] 匡达 (Kuang D), 胡文彬 (Hu W B). 无机材料学报 (Journal of Inorganic Materials), 2013, 28(3): 235.
[26] 柏嵩 (Bai S), 沈小平 (Shen X P). 化学进展(Progress in Chemistry), 2010, 22(11): 2106.
[27] Huang X, Qi X, Boey F, Zhang H. Chem. Soc. Rev., 2012, 41: 666.
[28] Geng X M, Niu L, Xing Z Y, Song R S, Liu G T, Sun M T, Cheng G S, Zhong H J, Liu Z H, Zhang Z J, Sun L F, Xu H X, Lu L, Liu L W. Adv. Mater., 2010, 22(5): 638.
[29] Hummers W S, Offeman R E. J. Am. Chem. Soc., 1958, 80: 1339.
[30] Kovtyukhova N I, Ollivier P J, Martin B J, Mallouk T E, Chizhik S A, Buzaneva E V, Gorchinskiy A D. Chem. Mater., 1999, 11: 771.
[31] Qu L H, Peng X G. J. Am. Chem. Soc., 2002, 124: 2049.
[32] Juarez B H, Klinke C, Kornowski A, Weller H. Nano Lett., 2007, 7: 3564.
[33] Feng M, Sun R Q, Zhan H B, Chen Y. Nanotechnology, 2010, 21: 075601.
[34] Cao A, Liu Z, Chu S S, Wu M H, Ye Z M, Cai Z W, Chang Y L, Wang S F, Gong Q H, Liu Y F. Adv. Mater., 2010, 22 (1): 103.
[35] Nethravathi C, Nisha T, Ravishankar N, Shivakumara C, Rajamathi M. Carbon, 2009, 47: 2054.
[36] Gao P, Liu J C, Sun D D, Ng W. J. Hazard Mater., 2013, 250/251: 412.
[37] Li L L, Liu K P, Yang G H, Wang C M, Zhang J R, Zhu J J. Adv. Funct. Mater., 2011, 21(5): 869.
[38] Huang J, Zhang L M, Chen B, Ji N, Chen F H, Zhang Y, Zhang Z J. Nanoscale, 2010, 2: 2733.
[39] Huang Q, Gao Lian. Nanotechnology, 2004, 15: 1855.
[40] Wang P, Jiang T F, Zhu C Z, Zhai Y M, Wang D J, Dong S J. Nano Res., 2010, 3(11): 794.
[41] Williams G, Seger B, Kamat P V. ACS Nano, 2008, 2: 1487.
[42] Williams G, Kamat P V. Langmuir, 2009, 25: 13869.
[43] Gao Z Y, Liu N, Wu D P, Tao W G, Xu F, Jiang K. Appl. Surf. Sci., 2012, 258: 2473.
[44] Wang X, Tian H, Yang Y, Wang H, Wang S, Zheng W, Liu Y. Journal of Alloys and Compounds, 2012, 524: 5.
[45] Zhou C, Wang Z, Xia J, Via B K, Zhang F, Xia Y, Li Y. C. R. Chimie, 2012, 15: 714.
[46] Liu F, Shao X, Wang J, Yang S, Li H, Meng X, Liu X, Wang M. Journal of Alloys and Compounds, 2013, 551: 327.
[47] Liu F Z, Shao X, Wang J P, Yang S R, Meng X H, Liu X H, Wang M. Mat. Sci. Semicon, Proc., 2013, 16: 429.
[48] Lu Z, Guo C X, Yang H B, Qiao Y, Guo J, Li C M. J. Colloid Interface Sci., 2011, 353(2): 588.
[49] Chen P, Xiao T Y, Li H H, Yang J J, Wang Z, Yao H B, Yu S H. ACS Nano, 2012, 6: 712.
[50] Ghosh T, Lee J H, Meng Z D, Ullah K, Park C Y, Nikam V, Oh W C. Materials Research Bulletin, 2013, 48(3): 1268.
[51] Yan S, Shi Y, Zhao B, Lu T, Hu D, Xu X, Wu J, Chen J. Journal of Alloys and Compounds, 2013, 570: 65.
[52] Kim Y, Han J, Hong B H, Kwon Y. Adv. Mater., 2010, 22: 515.
[53] Juárez B H, Meyns M, Chanaewa A, Cai Y, Klinke C, Weller H. J. Am. Chem. Soc., 2008, 130 (46): 15282.
[54] Yu K, Lu G, Mao S, Chen K, Kim H, Wen Z, Chen J. ACS Appl. Mater. Interfaces, 2011, 3: 2703.
[55] Yan J, Ye Q, Wang X, Yu B, Zhou F. Nanoscale, 2012, 4(6): 2109.
[56] Liu X J, Pan L K, Lv T, Zhu G, Sun Z, Sun C Q. Chem. Commun., 2011, 47: 11984.
[57] Li Q, Guo B D, Yu J G, Ran J R, Zhang B H, Yan H J, Gong J R. J. Am. Chem. Soc., 2011, 133: 10878.
[58] Ran J R, Yu J G. Green Chem., 2011, 13: 2708.
[59] 敏世雄 (Min S X), 吕功煊 (Lǘ G X). 物理化学学报 (Acta Phys. Chim. Sin.), 2011, 27(9): 2178.
[60] 陶丽华 (Tao L H), 蔡 燕 (Cai Y), 李在均 (Li Z J), 任国晓 (Ren G X), 刘俊康 (Liu J K). 无机材料学报(Journal of Inorganic Materials), 2011, 26(9): 912.
[61] Zhao J, Wu J, Yu F, Zhang X, Lan Z, Lin J. Electrochim. Acta, 2013, 96: 110.
[62] Chang H X, Lv X J, Zhang H, Li J H. Electrochem. Commun., 2010, 12: 483.
[63] Guo C X, Yang H B, Sheng Z M, Lu Z S, Song Q L, Li C M. Angewandte Chemie, 2010, 49 (17): 3014.
[64] Chen J, Xu F, Wu J, Qasim K, Zhou Y, Lei W, Sun L T, Zhang Y. Nanoscale, 2012, 4(2): 441.
[65] Wang Y, Yao H B, Wang X H, Yu S H. J. Mater. Chem., 2011, 21: 562.
[66] Zhang N, Yang M Q, Tang Z R, Xu Y J. Journal of Catalysis, 2013, 303: 60.
[67] Guo Z Y, Hao T T, Wang S, Gan N, Li X, Wei D Y. Electrochem. Commun., 2012, 14: 13.
[68] Wang K, Liu Q, Guan Q M, Wu J, Li H N, Yan J J. Biosensors and Bioelectronics, 2011, 26: 2252.
[69] Guo Z, Hao T, Duan J, Wang S, Wei D. Talanta, 2012, 30(89): 27.
[70] Hao T, Guo Z, Du S, Shi L. Sensors and Actuators B: Chemical, 2012, 171/172: 803.
[71] Zeng L, Wang R, Zhu L, Zhang J. Colloids Surf. B Biointerfaces, 2013, 110: 8.
[72] Yang M, Javadi A, Gong S. Sens. Actuators B: Chemical, 2011, 155(1): 357.
[73] Wang T, Zhang S, Mao C, Song J, Niu H, Jin B, Tian Y. Biosens. Bioelectron., 2012, 31: 369.
[74] Xie L, You L, Cao X. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2013, 109: 110.

[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[3] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[4] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[5] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[6] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.
[7] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[8] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[9] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[10] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[11] 陈怡峰, 王聪, 任科峰, 计剑. 生物医用高通量研究中的微液滴阵列[J]. 化学进展, 2021, 33(4): 543-554.
[12] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[13] 赵平平, 杨军星, 施健辉, 朱静怡. 基于树状大分子的SPECT成像造影剂的构建及其应用[J]. 化学进展, 2021, 33(3): 394-405.
[14] 徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178.
[15] 靳钧, 林梓恒, 石磊. 一维新型碳的同素异形体:碳链[J]. 化学进展, 2021, 33(2): 188-198.