English
新闻公告
More
化学进展 2014, Vol. 26 Issue (0203): 403-414 DOI: 10.7536/PC130657 前一篇   后一篇

• 综述与评论 •

纳晶纤维素的功能化及应用

吴伟兵*1, 张磊2   

  1. 1. 南京林业大学 江苏省制浆造纸科学与技术重点实验室 南京 210037;
    2. 南京邮电大学 材料科学与工程学院 南京 210046
  • 收稿日期:2013-06-01 修回日期:2013-10-01 出版日期:2014-02-15 发布日期:2013-12-18
  • 通讯作者: 吴伟兵,e-mail:wbwu@njfu.edu.cn E-mail:wbwu@njfu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.31200453,61205195),江苏高校优势学科建设工程项目和江苏政府留学奖学金项目资助

Functionalization and Applications of Nanocrystalline Cellulose

Wu Weibing*1, Zhang Lei2   

  1. 1. Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China;
    2. School of Materials Science & Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210046, China
  • Received:2013-06-01 Revised:2013-10-01 Online:2014-02-15 Published:2013-12-18
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 31200453, 61205195), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and Jiangsu Provincial Government Scholarship for Overseas Studies

纳晶纤维素(NCC)是一种由价廉的可再生原料制备得到的棒状纳米材料。NCC表面存在的羟基使其可直接进行化学修饰,也可作为生物模板组装负载无机纳米粒子,这赋予了NCC更多的功能。本文对NCC表面组装负载无机纳米粒子的研究进行了重点归纳。NCC具有独特的尺寸结构,优异的强度性质和物理化学性质,毒性较低,没有明显的环境问题,在众多领域有重要的应用价值。本文全面阐述了NCC在复合增强、绿色催化、光电材料、酶固定化、抗菌和医用材料、生物传感器、荧光探针和药物释放等方面的应用,并对其稳定性、相容性和毒性等实际应用性能进行了相应的探讨。

Nanocrystalline cellulose (NCC) is a kind of rod-like nanomaterial obtained from inexpensive renewable biomass. The presence of hydroxyl groups on NCC surface allows it to be further functionalized through chemical modification or deposition of nanoparticles. An introduction of the assembly and deposition of metal element, non-metal element, metal oxide, non-metal oxide, and inorganic salt nanoparticles on NCC is presented in this review. NCC has important application value in many fields owing to the unique structure, exceptional strength and physicochemical properties, biocompatibility and low toxicity. NCC has been widely used as reinforcing agent because of its nanoscale dimensions and outstanding mechanical strength. As a nanoscale biotemplate suitable for the assembly of nanoparticles, NCC has been designed to be high-efficiency composite catalyst. With the characteristics of anisotropy, birefringence and liquid crystallinity, NCC has shown important applications as optical and electronic material. Since NCC is modifiable, biocompatible and biodegradable, this review espically focuses on the applications of NCC in the field of biomedicine, such as enzyme immobilization, antimicrobial and medical materials, biosensors, fluorescent probes and drug delivery. The practical considerations including stability, compatibility and cytotoxicity are also discussed. In the future, NCC still needs to overcome the problems of dispersity, intrinsic hydrophily and manufacturing difficulty to realize industrialization and commercialization.

Contents
1 Introduction
2 Functionalization of NCC
2.1 Covalent modification
2.2 Deposition of nanoparticles on NCC
3 Applications of NCC
3.1 Reinforced composites
3.2 Catalysis
3.3 Optical and electronic materials
3.4 Enzyme immobilization
3.5 Antimicrobial and medical materials
3.6 Biosensors
3.7 Fluorescent probes
3.8 Drug delivery
4 Outlook

中图分类号: 

()

[1] Bai W, Holbery J, Li K C. Cellulose, 2009, 16: 455.
[2] Habibi Y, Lucia L A, Rojas O J. Chem. Rev., 2010, 110: 3479.
[3] Moon R J, Martini A, Nairn J, Simonsen J, Youngblood J. Chem. Soc. Rev., 2011, 40: 3941.
[4] Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A. Angew. Chem. Int. Ed., 2011, 50: 5438.
[5] 叶代勇(Ye D Y). 化学进展(Progress in Chemistry), 2007, 19: 1568.
[6] 李伟(Li W), 王锐(Wang R), 刘守新(Liu S X). 化学进展(Progress in Chemistry), 2010, 22: 2060.
[7] Pandey J K, Chu W S, Kim C S, Lee C S, Ahn S H. Composites: Part B, 2009, 40: 676.
[8] Bonini C, Heux L, Cavaille J Y, Lindner P, Dewhurst C, Terech P. Langmuir, 2002, 18: 3311.
[9] Rojas O J, Montero G A, Habibi Y. J. Appl. Polym. Sci., 2009, 113: 927.
[10] Zhou Q, Brumer H, Teeri T T. Macromolecules, 2009, 42: 5430.
[11] Braun B, Dorgan J R. Biomacromolecules, 2009, 10: 334.
[12] Montanari S, Roumani M, Heux L, Vignon M R. Macromolecules, 2005, 38: 1665.
[13] Siqueira G, Bras J, Dufresneet A. Biomacromolecules, 2009, 10: 425.
[14] Gousse C, Goffin A L, Schiltz N, Duquesne E, Dubois P, Dufresne A. Polymer, 2002, 43: 2645.
[15] Krouit M, Bras J, Belgacem M N. Eur. Poly. J., 2008, 4: 4074.
[16] Yang J, Ye D Y. Chin. Chem. Lett., 2012, 2: 367.
[17] Daly W H, Evenson T S, Iacono S T, Jones R W. Macro. Symp., 2001, 174: 155.
[18] Morandi G, Heath L, Thielemans W. Langmuir, 2009, 25: 8280.
[19] Chen J, Yi J, Sun P, Liu Z T, Liu Z W. Cellulose, 2009, 16: 1133.
[20] Zoppe J, Habibi Y, Rojas O J, Venditti R A, Johansson L S, Efimenko K, Osterberg M, Laine J P. Biomacromolecules, 2010, 11: 2683.
[21] Shin Y, Bae I T, Bruce W A, Gregory J E. J. Phys. Chem. C, 2008, 112: 4844.
[22] Padalkar S, Capadona J R, Rowan J S, Weder C, Won Y H, Stanciu L A, Moon R J. Langmuir, 2010, 26: 8497.
[23] Lam E, Hrapovic S, Majid E, Chong J H, Luong J H T. Nanoscale, 2012, 4: 997.
[24] Zhang T, Wang W, Zhang D, Zhang X, Ma Y, Zhou Y, Qi L. Adv. Funct. Mater., 2010, 20: 1152.
[25] Lam E, Male K B, Chong J H, Leung A C W, Luong J H T. Trends Biotechnol., 2012, 30: 283.
[26] Wu X, Lu C, Zhang W, Yuan G, Xiong R, Zhang X. J. Mater. Chem. A, 2013, 1: 8645.
[27] Li H, Song J, Shang S, Song Z, Wang D. ACS Appl. Mater. Interfaces, 2012, 4: 2413.
[28] Shin Y, Blackwood J M, Bae I T, Bruce W A, Gregory J E. Mater. Lett., 2007, 61: 4297.
[29] Shopsowitz K E, Qi H, Hamad W Y, MacLachlan M J. Nature, 2010, 468: 422.
[30] Liu S L, Tao D D, Bai H Y, Liu X Y. J. Appl. Polym. Sci., 2012, 126(1): E281.
[31] Zeng J, Zhu H, Kong J. Adv. Mater. Res., 2013, 634/638: 2318.
[32] Zhou Y, Ding E Y, Li W D. Mater. Lett., 2007, 61: 5050.
[33] Gebauer D, Oliynyk V, Salajkova M. Nanoscale, 2011, 3: 3563.
[34] Favier V, Chanzy H, Cavaille J Y. Macromolecules, 1995, 28: 6365.
[35] Hajji P, Cavaille J Y, Favier V, Gauthier C, Vigier G. Polym. Composites, 1996, 17: 612.
[36] Pu Y Q, Zhang J G, Elder T, Deng Y L, Gatenholm P, Ragauskas A J. Compos. Part B-Eng., 2007, 38: 360.
[37] Ruiz M M, Cavaille J Y, Dufresne A, Craillat C, Gerard J F. Macromol. Symp., 2001, 169: 211.
[38] Bhatnagar A, Sain M. J. Reinf. Plast. Comp., 2005, 24: 1259.
[39] Oksman K, Mathew A P, Bondeson D, Kvien I. Compos. Sci. Technol., 2006, 66: 2776.
[40] Wu Q, Henrihsson M, Liu X, Berglund L A. Biomacromolecules, 2007, 8: 3687.
[41] Nakagaito A N, Iwamoto S, Yano H. Appl. Phys. A Mater. Sci. Proc., 2005, 80: 93.
[42] Noorani S, Simonsen J, Atre S. Cellulose, 2007, 14: 577.
[43] Cao X D, Dong H, Li C M. Biomacromolecules, 2007, 8: 899.
[44] Takayanagi M, Minami S, Uemura S. J. Polym. Sci., Part C: Polym. Symp., 1964, 5: 113.
[45] Ouali N, Cavaille J Y, Perez J. Plast. Rubber Compos. Process. Appl., 1991, 16: 55.
[46] Samir M A S A, Alloin F, Dufresne A. Biomacromolecules, 2005, 6: 612.
[47] Siqueira G, Bras J, Dufresne A. Polymers, 2010, 2: 728.
[48] Khan A, Khan R A, Salmieri S, Le T C, Riedl B, Bouchard J, Chauve G, Tan V, Lacroix M. Carbohydr. Polym., 2012, 90: 1601.
[49] Svagan A J, Hedenqvist M S, Berglund L. Compos. Sci. Technol., 2009, 69: 500.
[50] Eichhorn S J, Dufresne A, Aranguren M, Marcovich N E, Capadona J R, Rowan S J, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito A N, Mangalam A, Simonsen J, Benight A S, Bismarck A, Berglund L A, Peijs T. J. Mater. Sci., 2010, 45: 1.
[51] Olsson R T, Kraemer R, Lopez-Rubio A, Torres-Giner S, Ocio M J, Lagaron J M. Macromolecules, 2010, 43: 4201.
[52] Schroers M, Kokil A, Weder C. J. Appl. Polym. Sci., 2004, 93: 2883.
[53] Viet D, Beck-Candanedo S, Gray D G. Cellulose, 2007, 14: 109.
[54] Van den Berg O, Capadona J R, Weder C. Biomacromolecules, 2007, 8: 1353.
[55] Ljungberg N, Cavaille J-Y, Heux L. Polymer, 2006, 47: 6285.
[56] Cirtiu C M, Dunlop-Briere A F, Moores A. Green Chem., 2011, 13: 288.
[57] 李伟(Li W), 赵莹(Zhao Y), 刘守新(Lu S X). 催化学报(Chinese J. Catal. ), 2012, 33: 342.
[58] Sun D P, Yang J Z, Wang X. Appl. Surf. Sci., 2010, 25: 2241.
[59] Yano H, Sugiyama J, Nakagaito A N, Nogi M, Matsuura T, Hikita M, Handa K. Adv. Mater., 2005, 17: 153.
[60] Cranston E D, Gray D G. Biomacromolecules, 2006, 7: 2522.
[61] Roman M, Gray D G. Langmuir, 2005, 21: 5555.
[62] Lima M M D, Borsali R. Macromol. Rapid Commun., 2004, 25: 771.
[63] Cranston E D, Gray D G. Colloids Surf. A, 2008, 325: 44.
[64] Beck-Candanedo S, Roman M, Gray D G. Biomacromolecules, 2005, 6: 1048.
[65] Viet D, Beck-CandanedoS, Gray D G. Cellulose, 2007, 14: 109.
[66] Shopsowitz K E, Hamad W Y, MacLachlan M J. J. Am. Chem. Soc. 2012, 134: 867.
[67] Kelly J A, Shopsowitz K E, Ahn J M, Hamad W Y, MacLachlan M J. Langmuir, 2012, 28: 17256.
[68] Shopsowitz K E, Hamad W Y, MacLachlan M J. Angew. Chem. Int. Ed., 2011, 50: 10991.
[69] Zhang Y P, Chodavarapu V P, Kirk A G, Andrews M P J. J. Nanophotonics, 2012, 6: 063516.
[70] Nogi M, Iwamoto S, Nakagaito A N, Yano H. Adv. Mater., 2009, 21: 1595.
[71] Nogi M, Yano H. Appl. Phys. Lett., 2009, 94: 233117.
[72] Nogi M, Ifuku S, Abe K, Handa K, Nakagaito A N, Yano H. Appl. Phys. Lett., 2006, 88: 133124.
[73] Petersson L, Oksman K. Compos. Sci. Technol., 2006, 66: 2187.
[74] Okahisa Y, Yoshida A, Miyaguchi S, Yano H. Compos. Sci. Technol., 2009, 69: 1958.
[75] Shah J, Brown R M. Appl. Microbiol. Biot., 2005, 66: 352.
[76] Yoon S H, Jin H J, Kook M C, Pyun Y R. Biomacromolecules, 2006, 7: 1280.
[77] Jung R, Kim H S, Kim Y, Kwon S M, Lee H S, Jin H J. J. Polym. Sci. Part B: Polym. Phys., 2008, 46: 1235.
[78] Azizi S M A S, Chazeau L, Alloin F, Cavaillé J Y, Dufresne A, Sanchez J Y. Electrochim. Acta, 2005, 50: 3897.
[79] Alloin F, D’Aprea A, Kissi N E, Dufresne A, Bossard F. Electrochim. Acta, 2010, 55: 5186.
[80] Lalia B S, Samad Y A, Hashaikeh R. J. Appl. Polym. Sci., 2012, 126: E442.
[81] Lalia B S, Samad Y A, Hashaikeh R. J. Solid State Electrochem., 2013, 17: 575.
[82] Yang R, Tan H, Wei F, Wang S. Biotechnology, 2008, 7: 233.
[83] Edwards J V, Prevost N T, Condon B, French A, Wu Q. Cellulose, 2013, 19: 495.
[84] Incani V, Danumah C, Boluk Y. Cellulose, 2013, 20: 191.
[85] Mahmoud K A, Male K B, Hrapovic S, Luong J H T. ACS Appl. Mater. Interfaces, 2009, 1: 1383.
[86] Jung R, Kim Y, Kim H S, Jin H J. J. Biomater. Sci. Polym. Ed., 2009, 20: 311.
[87] Drogat N, Granet R, Sol V, Memmi A, Saad N, Klein K C, Bressollier P, Krausz P. J. Nanopart. Res., 2011, 13: 1557.
[88] Azizi S, Ahmad M B H, Hussein M Z, Ibrahim N A. Molecules, 2013, 18(6): 6269.
[89] Carpenter B L, Feese E, Sadeghifar H, Argyropoulos D S, Ghiladi R A. Photochem. Photobiol., 2012, 88: 527.
[90] Dugan J M, Gough J E, Eichhorn S J. Biomacromolecules, 2010, 11: 2498.
[91] Dugan J M, Collins R F, Gough J E, Eichhorn S J. Acta Biomaterialia, 2013, 9: 4707.
[92] Gao C, Xiong G Y, Luo H L, Ren K J, Huang Y, Wan Y Z. Cellulose, 2010, 17: 365.
[93] Grande C J, Torres F G, Gomez C, Carmen B M. Acta Biomaterialia, 2009, 5: 1605.
[94] Mangalam A P, Simonsen J, Benight A S. Biomacromolecules, 2009, 10: 497.
[95] Liu H, Wang D, Song Z, Shang S. Cellulose, 2011, 18: 67.
[96] Liu H, Wang D, Shang S B, Song Z G. Carbohydr. Polym., 2011, 83: 38.
[97] Wang W, Zhang T J, Zhang D W, Li H Y, Ma Y R, Qi L M, Zhou Y L, Zhang X X. Talanta, 2011, 84: 71.
[98] Olivier C, Moreau C, Bertoncini P, Bizot H, Chauvet O, Cathala B. Langmuir, 2012, 28: 12463.
[99] Tsourounaki K, Bonné M J, Thielemans W, Psillakis E, Helton M, McKee A, Marken F. Electroanalysis, 2008, 20: 2395.
[100] Zhang L, Li Y, Li D W, Jing C, Chen X, Lv M, Huang Q, Long Y T, Willner I. Angew. Chem. Int. Ed., 2011, 50: 6789.
[101] Dong S P, Roman M. J. Am. Chem. Soc., 2007, 129: 13810.
[102] Nielsen L J, Eyley S, Thielemans W, Aylott J W. Chem. Commun., 2010, 46: 8929.
[103] Hassan M L, Moorefield C M, Elbatal H S, Newkomeb G R, Modarelli D A, Romano N C. Mater. Sci. Eng. B, 2012, 177: 350.
[104] Mahmoud K A, Mena J A, Male K B, Hrapovic S, Kamen A, Luong J H T. ACS Appl. Mater. Interfaces, 2010, 2: 2924.
[105] Male K B, Leung A C W, Montes J, Kamen A, Luong J H T. Nanoscale, 2012, 4: 1373.
[106] Kovacs T, Naish V, O'Connor B, Blaise C, Gagné F, Hall L, Trudeau V, Martel P. Nanotoxicology, 2010, 4: 255.
[107] Roman M, Dong S, Hirani A, Lee Y W. Cellulose Nanocrystals for Drug Delivery. In Polysaccharide Materials, Performance by Design (Eds. Edgar K J). American Chemical Society, 2010. 81.
[108] Letchford K, Wasserman B Z, Ye L, Hamad W Y, Burt H M. Int. J. Nanomed., 2011, 6: 321.
[109] Dash R, Ragauskas A J. RSC Adv., 2012, 2: 3403.
[110] Wang H, Roman M. Biomacromolecules, 2011, 12: 1585.

[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[3] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[4] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[5] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[6] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[7] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[8] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[9] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[10] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[11] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[12] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[13] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[14] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[15] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
阅读次数
全文


摘要

纳晶纤维素的功能化及应用