English
新闻公告
More
化学进展 2014, Vol. 26 Issue (01): 75-86 DOI: 10.7536/PC130647 前一篇   后一篇

• 综述与评论 •

介晶的制备、性能与应用研究

卜凡兴, 都晨杰, 姜继森*   

  1. 华东师范大学物理系 纳米功能材料与器件应用研究中心 上海 200241
  • 收稿日期:2013-06-01 修回日期:2013-09-01 出版日期:2014-01-15 发布日期:2013-11-08
  • 通讯作者: 姜继森,e-mail:jsjiang@phy.ecnu.edu.cn E-mail:jsjiang@phy.ecnu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 21173084)资助

Synthesis, Properties and Applications of Mesocrystals

Bu Fanxing, Du Chenjie, Jiang Jisen*   

  1. Department of Physics, Center for Functional Nanomaterials and Devices, East China Normal University, Shanghai 200241, China
  • Received:2013-06-01 Revised:2013-09-01 Online:2014-01-15 Published:2013-11-08
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21173084)

介晶(mesocrystal)是一类由纳米晶以结晶学有序的方式自组装而成的纳米粒子超结构,通常可以显示类单晶的电子衍射行为。介晶形成过程对经典结晶的挑战及其颗粒聚集体的独特结构特色具有的潜在应用促使人们对其广泛的研究。本文主要综述了介晶的制备方法、性能和应用研究的最新进展,其中合成方法主要包括共沉淀法、水热法、溶剂热法、拓扑转变法、电化学法和溶解再结晶方法,性能和应用方面主要介绍了介晶的催化性能、电化学性能、光电性能和生物医学应用。本文着重讨论了介晶的形成过程和介晶的结构-性能关系,指出了目前介晶的制备、性能和应用研究中存在的科学问题,并展望了其发展方向。

Mesocrystals are one kind of self-assembled superstructures from nanocrystals in crystallographic ordered way, often showing single-crystal-like electron diffraction behaviors. The formation process of mesocrystals imposes a great challenge to classic crystallization theory and their unique structural features of nanocrystals aggregations may create enhanced and new properties, which drive researchers to make extensive studies. This paper reviews the latest progress in the preparation methods, properties and applications of mesocrystals. The synthesis methods of mesocrystals mainly include coprecipitation, hydrothermal, solvothermal, topological conversion, electrochemical, dissolution and recrystallization methods. And catalytic, electrochemical, optical and electrical properties as well as biomedical applications of mesocrystals are exhibited. The formation process and structure-property relationships of mesocrystals are emphasized. Besides, some scientific issues about the preparations, properties and applications of mesocrystals are pointed out, and the outlook of further development in the field of mesocrystals is also given.

Contents
1 Introduction
2 Synthesis of mesocrystals
2.1 Coprecipitation methods
2.2 Hydrothermal methods
2.3 Solvothermal methods
2.4 Topological conversion methods
2.5 Electrochemical methods
2.6 Dissolution and recrystallization methods
3 Properties and applications of mesocrystals
3.1 Catalytic properties
3.2 Electrochemical properties
3.3 Optical and electrical properties
3.4 Biomedical applications
4 Conclusion and outlook

中图分类号: 

()

[1] Cölfen H, Antonietti M. Angew. Chem. Int. Ed., 2005, 44: 5576.
[2] Niederberger M, Colfen H. Phys. Chem. Chem. Phys., 2006, 8: 3271.
[3] Zhou L, O'Brien P. Small, 2008, 4: 1566.
[4] Song R Q, Cölfen H. Adv. Mater., 2010, 22: 1301.
[5] Fang J, Ding B, Gleiter H. Chem. Soc. Rev., 2011, 40: 5347.
[6] Cao A, Hu J, Wan L. Sci. China Chem., 2012, 42: 1642.
[7] Cai J, Qi L. Sci. China Chem., 2012, 55: 2318.
[8] Gebauer D, Völkel A, Cölfen H. Science, 2008, 322: 1819.
[9] Baumgartner J, Dey A, Bomans P H H, Le Coadou C, Fratzl P, Sommerdijk N A J M, Faivre D. Nat. Mater., 2013, 12: 310.
[10] Zhuang Z, Huang F, Lin Z, Zhang H. J. Am. Chem. Soc., 2012, 134: 16228.
[11] Xie S, Zhou X, Han X, Kuang Q, Jin M, Jiang Y, Xie Z, Zheng L. J. Phys. Chem. C, 2009, 113: 19107.
[12] Wang T, Zhuang J, Lynch J, Chen O, Wang Z, Wang X, LaMontagne D, Wu H, Wang Z, Cao Y C. Science, 2012, 338: 358.
[13] Wang T, Wang X, LaMontagne D, Wang Z, Wang Z, Cao Y C. J. Am. Chem. Soc., 2012, 134: 18225.
[14] Zhao Z, Zhang J, Dong F, Yang B. J. Colloid Interface Sci., 2011, 359: 351.
[15] Zhou L, O'Brien P. J. Phys. Chem. Lett., 2012, 3: 620.
[16] Wang T, Cölfen H, Antonietti M. J. Am. Chem. Soc., 2005, 127: 3246.
[17] Xu A W, Antonietti M, Cölfen H, Fang Y P. Adv. Funct. Mater., 2006, 16: 903.
[18] Xu A W, Antonietti M, Yu S H, Cölfen H. Adv. Mater., 2008, 20: 1333.
[19] Yu S H, Cölfen H, Tauer K, Antonietti M. Nat. Mater., 2005, 4: 51.
[20] Waltz F, Wißmann G, Lippke J, Schneider A M, Schwarz H C, Feldhoff A, Eiden S, Behrens P. Crystal Growth & Design, 2012, 12: 3066.
[21] Xu X, Yang H, Liu Y. CrystEngComm, 2012, 14: 5289.
[22] Sun S, Zhang X, Zhang J, Song X, Yang Z. Crystal Growth & Design, 2012, 12: 2411.
[23] Sun S, Zhang X, Zhang J, Wang L, Song X, Yang Z. CrystEngComm, 2013, 15: 867.
[24] Wang L, Tang K, Liu Z, Wang D, Sheng J, Cheng W. J. Mater. Chem., 2011, 21: 4352.
[25] Soare L C, Bowen P, Lemaitre J, Hofmann H. J. Phys. Chem. B, 2006, 110: 17763.
[26] Hu M, Furukawa S, Ohtani R, Sukegawa H, Nemoto Y, Reboul J, Kitagawa S, Yamauchi Y. Angew. Chem. Int. Ed., 2012, 51: 984.
[27] Hu M, Torad N L, Yamauchi Y. Eur. J. Inorg. Chem., 2012, 4795.
[28] Hu M, Belik A A, Imura M, Yamauchi Y. J. Am. Chem. Soc., 2012, 135: 384.
[29] Lenders J J M, Dey A, Bomans P H H, Spielmann J, Hendrix M M R M, de With G, Meldrum F C, Harder S. Sommerdijk N A J M. J. Am. Chem. Soc., 2011, 134: 1367.
[30] Liu Z, Wen X D, Wu X L, Gao Y J, Chen H T, Zhu J, Chu P K. J. Am. Chem. Soc., 2009, 131: 9405.
[31] Ye F, Peng Y, Chen G Y, Deng B, Xu A W. J. Phys. Chem. C, 2009, 113: 10407.
[32] Zhou L, Smyth-Boyle D, O'Brien P. J. Am. Chem. Soc., 2008, 130: 1309.
[33] Uchiyama H, Imai H. Crystal Growth & Design, 2010, 10: 1777.
[34] Yang H, Wu X L, Cao M H, Guo Y G. J. Phys. Chem. C, 2009, 113: 3345.
[35] Liu S, Yu J. J. Solid State Chem., 2008, 181: 1048.
[36] Liu Y, Zhu G, Ge B, Zhou H, Yuan A, Shen X. CrystEngComm, 2012, 14: 6264.
[37] Hu M, Jiang J S, Ji R P, Zeng Y. CrystEngComm, 2009, 11: 2257.
[38] Hu M, Jiang J S, Lin C C, Zeng Y. CrystEngComm, 2010, 12: 2679.
[39] Zhao J, Tan R, Guo Y, Lu Y, Xu W, Song W. CrystEngComm, 2012, 14: 4575.
[40] Cao A, Manthiram A. Phys. Chem. Chem. Phys., 2012, 14: 6724.
[41] Cai J, Ye J, Chen S, Zhao X, Zhang D, Chen S, Ma Y, Jin S, Qi L. Energy Environ. Sci., 2012, 5: 7575.
[42] Duan X, Mei L, Ma J, Li Q, Wang T, Zheng W. Chem. Commun., 2012, 48: 12204.
[43] Ye J, Liu W, Cai J, Chen S, Zhao X, Zhou H, Qi L. J. Am. Chem. Soc., 2010, 133: 933.
[44] Liu Y, Shi J, Peng Q, Li Y. J. Mater. Chem., 2012, 22: 6539.
[45] Wang S S, Xu A W. CrystEngComm, 2013, 15: 376.
[46] Sun S, Chang X, Li Z. Mater. Charact., 2012, 73: 130.
[47] Li X, Ni C, Chen F, Lu X, Chen Z. J. Solid. State. Chem., 2009, 182: 2185.
[48] Wang X, Ma Y, Sugunan A, Qin J, Toprak M, Zhu B, Muhammed M. J. Nanopart. Res., 2011, 13: 5879.
[49] Pucci A, Willinger M G, Liu F, Zeng X, Rebuttini V, Clavel G, Bai X, Ungar G, Pinna N. ACS Nano, 2012, 6: 4382.
[50] Meng L-r, Chen W, Tan Y, Zou L, Chen C, Zhou H, Peng Q, Li Y. Nano Res., 2011, 4: 370.
[51] Figlarz M, Gerand B, Delahaye-Vidal A, Dumont B, Harb F, Coucou A, Fievet F. Solid State Ionics, 1990, 43: 143.
[52] Hu M, Belik A A, Sukegawa H, Nemoto Y, Imura M, Yamauchi Y. Chem. Asian J., 2011, 6: 3195.
[53] Wang F, Lu C, Qin Y, Liang C, Zhao M, Yang S, Sun Z, Song X. J. Power Sources, 2013, 235: 67.
[54] Hu M, Yamauchi Y. Chem. Asian J., 2011, 6: 2282.
[55] Xiong S, Chen J S, Lou X W, Zeng H C. Adv. Funct. Mater., 2012, 22: 861.
[56] Chen Y, Qu B, Mei L, Lei D, Chen L, Li Q, Wang T. J. Mater. Chem., 2012, 22: 25373.
[57] Yang Y, Yang Y, Wu H, Guo S. CrystEngComm, 2013, 15: 2608.
[58] Dang F, Hoshino T, Oaki Y, Hosono E, Zhou H, Imai H. Nanoscale, 2013, 5: 2352.
[59] Kalyani V, Vasile B S, Ianculescu A, Buscaglia M T, Buscaglia V, Nanni P. Crystal Growth & Design, 2012, 12: 4450.
[60] Fang J, Leufke P M, Kruk R, Wang D, Scherer T, Hahn H. Nano Today, 2010, 5: 175.
[61] Xu M, Wang F, Ding B, Song X, Fang J. RSC Advances, 2012, 2: 2240.
[62] Li T, Cao Z, You H, Xu M, Song X, Fang J. Chem. Phys. Lett., 2013, 555: 154.
[63] Yao R, Cao C, Bai J. CrystEngComm, 2013, 15: 3279.
[64] Ma Y, Cölfen H, Antonietti M. J. Phys. Chem. B, 2006, 110: 10822.
[65] Wohlrab S, Pinna N, Antonietti M, Cölfen H. Chem. Eur. J., 2005, 11: 2903.
[66] Jiang Y, Gong H, Volkmer D, Gower L, Cölfen H. Adv. Mater., 2011, 23: 3548.
[67] Jiang Y, Gong H, Grzywa M, Volkmer D, Gower L, Cölfen H. Adv. Funct. Mater., 2013, 23: 1547.
[68] Su Y, Yan X, Wang A, Fei J, Cui Y, He Q, Li J. J. Mater. Chem., 2010, 20: 6734.
[69] Gong Q, Qian X, Ma X, Zhu Z. Crystal Growth & Design, 2006, 6: 1821.
[70] Sun J, Chen G, Pei J, Jin R, Wang Q, Guang X. J. Mater. Chem., 2012, 22: 5609.
[71] Quan Z, Fang J. Nano Today, 2010, 5: 390.
[72] Fang X L, Chen C, Jin M S, Kuang Q, Xie Z X, Xie S Y, Huang R B, Zheng L S. J. Mater. Chem., 2009, 19: 6154.
[73] Tartaj P. Chem. Commun., 2011, 47: 256.
[74] Bian Z, Tachikawa T, Majima T. J. Phys. Chem. Lett., 2012, 3: 1422.
[75] Hu X, Gong J, Zhang L, Yu J C. Adv. Mater., 2008, 20: 4845.
[76] Teng X, Maksimuk S, Frommer S, Yang H. Chem. Mater., 2006, 19: 36.
[77] Nogami M, Koike R, Jalem R, Kawamura G, Yang Y, Sasaki Y. J. Phys. Chem. Lett., 2010, 1: 568.
[78] Bian Z, Tachikawa T, Kim W, Choi W, Majima T. J. Phys. Chem. C, 2012, 116: 25444.
[79] Zhu G, Liu Y, Ji Z, Bai S, Shen X, Xu Z. Mater. Chem. Phys., 2012, 132: 1065.
[80] Zhang L, Cao X F, Chen X T, Xue Z L. J. Colloid Interface Sci., 2011, 354: 630.
[81] Wang D, Li J, Cao X, Pang G, Feng S. Chem. Commun., 2010, 46: 7718.
[82] Tartaj P, Amarilla J M. Adv. Mater., 2011, 23: 4904.
[83] Hong Z, Wei M, Lan T, Cao G. Nano Energy, 2012, 1: 466.
[84] Hong Z, Wei M, Lan T, Jiang L, Cao G. Energy Environ. Sci., 2012, 5: 5408.
[85] Bilecka I, Hintennach A, Djerdj I, Novak P, Niederberger M. J. Mater. Chem., 2009, 19: 5125.
[86] Huang M, Schilde U, Kumke M, Antonietti M, Cölfen H. J. Am. Chem. Soc., 2010, 132: 3700.
[87] Tseng Y H, Lin H Y, Liu M H, Chen Y F, Mou C Y. J. Phys. Chem. C, 2009, 113: 18053.
[88] Wu X L, Xiong S J, Liu Z, Chen J, Shen J C, Li T H, Wu P H, Chu P K. Nat. Nano., 2011, 6: 103.
[89] Hu B, Wu L H, Zhao Z, Zhang M, Chen S F, Liu S J, Shi H Y, Ding Z J, Yu S H. Nano Res., 2010, 3: 395.
[90] Kijima M, Oaki Y, Imai H. Chem. Eur. J., 2011, 17: 2828.
[91] Ge J, Hu Y, Biasini M, Beyermann W P, Yin Y. Angew. Chem. Int. Ed., 2007, 46: 4342.
[92] Huang X, Tang S, Yang J, Tan Y. Zheng N. J. Am. Chem. Soc., 2011, 133: 15946.
[93] Su Y, He Q, Yan X, Fei J, Cui Y, Li J. Chem. Eur. J., 2011, 17: 3370.
[94] Oaki Y, Kijima M, Imai H. J. Am. Chem. Soc., 2011, 133: 8594.
[95] Espinosa H D, Juster A L, Latourte F J, Loh O Y, Gregoire D, Zavattieri P D. Nat. Commun., 2011, 2: 173.

[1] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[2] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[3] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[4] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[5] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[6] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[7] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[8] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[9] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[10] 智康康, 杨鑫. 天然产物凝胶及其凝胶质[J]. 化学进展, 2019, 31(9): 1314-1328.
[11] 林代武, 邢起国, 王跃飞, 齐崴, 苏荣欣, 何志敏. 多肽超分子手性自组装与应用[J]. 化学进展, 2019, 31(12): 1623-1636.
[12] 刘耀华, 刘育. 基于偶氮功能基的光控超分子组装[J]. 化学进展, 2019, 31(11): 1528-1539.
[13] 徐子悦, 张运昌, 林佳乐, 王辉, 张丹维, 黎占亭. 药物输送体系构筑中的超分子组装策略[J]. 化学进展, 2019, 31(11): 1540-1549.
[14] 郭家田, 卢玉超, 毕晨, 樊佳婷, 许国贺, 马晶军. 刺激响应型肽自组装及其应用[J]. 化学进展, 2019, 31(1): 83-93.
[15] 徐柳, 钱晨, 朱辰奇, 陈志鹏, 陈瑞*. 基于多肽的纳米药物递送系统的研究[J]. 化学进展, 2018, 30(9): 1341-1348.
阅读次数
全文


摘要

介晶的制备、性能与应用研究