English
新闻公告
More
化学进展 2014, Vol. 26 Issue (0203): 277-292 DOI: 10.7536/PC130646 前一篇   后一篇

• 综述与评论 •

卟啉金属有机骨架材料的合成及其在催化反应

庄长福1,2,4, 刘建路2, 戴文1,3, 吴中平2, 王瑛4, 高爽*1   

  1. 1. 中国科学院大连化学物理研究所 大连 116023;
    2. 山东海化集团有限公司 潍坊 262737;
    3. 中国科学院大学 北京 100039;
    4. 西南林业大学材料工程学院 昆明 650224
  • 收稿日期:2013-06-01 修回日期:2013-10-01 出版日期:2014-02-15 发布日期:2013-12-18
  • 通讯作者: 高爽,e-mail:sgao@dicp.ac.cn E-mail:sgao@dicp.ac.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No.2009CB623505)、国家自然科学基金项目(No.21273225)和中国博士后科学基金项目(No.2013M541257)资助

Synthesis and Applications in Catalysis of Porphyrinic Metal-Organic Frameworks

Zhuang Changfu1,2,4, Liu Jianlu2, Dai Wen1,3, Wu Zhongping2, Wang Ying4, Gao Shuang*1   

  1. 1. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
    2. Shandong Haihua Group Corporation Ltd., Weifang 262737, China;
    3. University of the Chinese Academy of Sciences, Beijing 100039, China;
    4. Faculty of Materials Engineering, Southwest Forestry University, Kunming 650224, China
  • Received:2013-06-01 Revised:2013-10-01 Online:2014-02-15 Published:2013-12-18
  • Supported by:

    This work was supported by the State Key Development Program for Basic Research of China (No.2009CB623505), the National Natural Science Foundation of China (No.21273225), and the China Postdoctoral Science Foundation (No.2013M541257)

金属有机骨架(metal-organic frameworks,MOFs)材料不仅具有非常高的孔隙率和表面积,而且其骨架结构可调控性强,容易实现功能化。功能性MOFs材料是近年发展起来的均相催化剂多相化的有效方法之一。均相催化剂金属卟啉具有很好的催化活性,卟啉构建功能性MOFs材料主要通过两种方式:一种是卟啉作为有机构筑模块制备MOFs材料,另一种是将金属卟啉封装到MOFs内部。卟啉MOFs材料因集合了MOFs的微观结构可调控性和仿酶催化剂金属卟啉的特殊催化活性而引起广泛关注。本文介绍了卟啉MOFs材料的设计合成策略及近年来卟啉MOFs材料在催化领域中的应用,并对其催化应用趋势作了展望,以期对卟啉MOFs材料的设计合成及其催化性能有比较全面的认识。

Heterogeneous catalysis is one of the promising applications for metal-organic frameworks (MOFs) materials because of their high porosity, large surface areas and their flexible tailoring. An attractive approach to design MOFs-based catalysts is to heterogenize them by employing known homogeneous molecular catalysts as struts. In view of the enormous utility as active sites in metallo-enzymes, metalloporphyrin is obvious candidates for incorporation into MOFs as catalytically functional struts. Many efficient strategies have been established for the rational design and synthesis of catalytically functional porphyrinic MOFs. This review is aimed to summarize recent progress on porphyrinic MOFs, including new synthesis strategies and applications in catalysis. The development trends of porphyrinic MOFs are also prospected.

Contents
1 Introduction
2 Synthesis strategies for porphyrinic MOFs
2.1 Utility of extendable porphyrinic ligands in generating secondary building units (SBUs)
2.2 Using specially designed spacers to stabilize secondary building units (SBUs)
2.3 Combination of mixed-ligands
2.4 Template-directed synthesis
3 Heterogeneous catalytic performances of porphyrinic MOFs
3.1 MOFs-based catalysts constructed by porphyrinic ligands
3.2 Catalytic reactions of MOFs-encapsulated porphyrinic catalysts
4 Conclusions and outlook

中图分类号: 

()

[1] Fujita M, Kwon Y J, Washizu S, Ogura K. J. Am. Chem. Soc., 1994, 116: 1151.
[2] Zhang J P, Zhang Y B, Lin J B, Chen X M. Chem. Rev., 2012, 112: 1001.
[3] Lee J Y, Farha O K, Roberts J, Scheidt K A, Nguyen S T, Hupp J T. Chem. Soc. Rev., 2009, 38: 1450.
[4] Corma A, García H, Llabrés F X, Xamena I. Chem. Rev., 2010, 110: 4606.
[5] Ma L, Abney C, Lin W. Chem. Soc. Rev., 2009, 38: 1248.
[6] Czaja A U, Trukhanb N, Mullerb U. Chem. Soc. Rev., 2009, 38: 1284.
[7] Yoon M, Srirambalaji R, Kim K. Chem. Rev., 2012, 112: 1196.
[8] 刘兵(Liu B), 介素云(Jie S Y), 李伯耿(Li B G). 化学进展(Progress in Chemistry), 2013, 25 (1): 36.
[9] Nuzhdin A L, Dybtsev D N, Bryliakov K P, Talsi E P, Fedin V P. J. Am. Chem. Soc., 2007, 129: 12958.
[10] Abrahams B F, Hoskins B F, Michail D M, Robson R. Nature, 1994, 369: 727.
[11] 刘丽丽(Liu L L), 张鑫(Zhang X), 徐春明(Xu C M). 化学进展(Progress in Chemistry), 2010, 11 (22): 2089.
[12] Kitagawa S, Noro S I, Nakamura T. Chem. Commun., 2006, 701.
[13] Lu H J, Zhang X P. Chem. Soc. Rev., 2011, 40: 1899.
[14] 李沛陪(Li P P), 童金辉(Tong J H), 李臻(Li Z), 夏春谷(Xia C G), 陈静(Chen J). 分子催化(Journal of Molecular Catalysis), 2010, 24(2): 158.
[15] 周贤太(Zhou X T), 纪红兵(Ji H B), 裴丽霞(Pei L X), 佘远斌(She Y B), 徐建昌(Xu J C), 王乐夫(Wang L F). 有机化学(Chinese Journal of Organic Chemistry), 2007, 27: 1039.
[16] Moghadam M, Tangs T S, Mirkhani V. Bioorganic Medicinal Chemistry, 2009, 17: 3394.
[17] Rose E, Andrioletti B, Zrig S, Melanie Q E. Chem. Soc. Rev., 2005, 34: 573.
[18] Suslick K S, Bhyrappa P, Chou J H, Kosal M E, Nakagaki S, Smithenry D W, Wilson S R. Acc. Chem. Res., 2005, 38: 283.
[19] Goldberg I. Chem. Commun., 2005, 1243.
[20] Shirley N, Gabriel K B F, Geani M U, Kelly A D F C. Molecules, 2013, 18: 7279.
[21] Burnett B J, Barron P M, Hu C, Choe W. CrystEngComm, 2012, 14: 3839.
[22] Zou C, Wu C D. Dalton. Trans., 2012, 41: 3879.
[23] Tranchemontagne D J, Mendoza-Cortes J, O'Keeffe M, Yaghi O M. Chem. Soc. Rev., 2009, 38: 1257.
[24] O'Keeffe M. Chem. Soc. Rev., 2009, 38: 1215.
[25] Chui S S Y, Lo S M F, Charmant J P H, Orpen A G, Williams I D. Science, 1999, 283: 1148.
[26] Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O'Keeffe M, Yaghi O M. Science, 2002, 295: 469.
[27] Chae H K, Siberio-Pérez D Y, Kim J, Go Y, Eddaoudi M, Matzger A J, O'Keeffe M, Yaghi O M. Nature, 2004, 427: 523.
[28] Johnson J A, Lin Q, Wu L C, Obaidi N, Zachary L O, Reeson T C, Chenb Y S, Zhang J. Chem. Commun., 2013, 49: 2828.
[29] Karmakar A, Goldberg I. CrystEngComm, 2010, 12: 4095.
[30] Matsunaga S, Endo N, Mori W. Eur. J. Inorg. Chem., 2011, 4550.
[31] 方千荣(Fang Q R). 吉林大学博士论文 (Doctoral Dissertation of Jilin University), 2007.
[32] Ferey G, Mellot D C, Serre C, Millange F, Dutour J, Surble S, Margiolaki l. Science, 2005, 309: 2040.
[33] Choi E Y, Wray C A, Hu C, Choe W. Cryst. Eng. Comm., 2009, 11: 553.
[34] Ruiz-olina M D, Gerbier P, Rumberger E, Amabilino D B, Guzei I A, Folting K, Huffman J C, Rheingold A, Christou G, Veciana J, Hendrickson D N. J. Mater. Chem., 2002, 12: 1152.
[35] Milios C J, Kefalloniti E, Raptopoulou C P, Terzis A, Vicente R, Lalioti N, Escuer A, Perlepes S P. Chem. Commun., 2003, 819.
[36] Edger M, Mitchell R, Slawin A M, Lightfoot P, Wright P A. Chem. Eur. J., 2001, 7: 5168.
[37] Ma C B, Chen C N, Liu Q T, Liao D H, Li L, Sun L C. New J. Chem., 2003, 27: 890.
[38] Kim J, Chen B L, Reineke T M, Li H, Eddaoudi M, Moler D B, O'Keeffe M, Yaghi O M. J. Am. Chem. Soc., 2001, 123: 8239.
[39] Yaghi O M, Davis C E, Li G, Li H. J. Am. Chem. Soc., 1997, 119: 2861.
[40] Lu J, Mondal A, Moulton B, Zaworotko M J. Angew. Chem. Int. Ed., 2001, 40: 2113.
[41] 孙锦玉(Sun J Y). 复旦大学博士论文 (Doctoral Dissertation of Fudan University), 2003.
[42] Rujiwatra A, Kepert C J, Rosseinsky M J. Chem Commun., 2001, 495.
[43] Choi E Y, Barron P M, Novotny R W, Son H T, Hu C, Choe W. Inorg. Chem., 2009, 48: 426.
[44] Barron P M, Wray C A, Hu C, Guo Z, Choe W. Inorg. Chem., 2010, 49: 10217.
[45] Burnett B J, Barron P M, Hu C, Choe W. J. Am. Chem. Soc., 2011, 133: 9984.
[46] Chung H, Barron P M, Novotny R W, Son H T, Hu C, Choe W. Cryst. Growth Des., 2009, 9: 3327.
[47] Shultz A M, Farha O K, Hupp J T, Nguyen S T. J. Am. Chem. Soc., 2009, 131: 4204.
[48] Farha O K, Shultz A M, Sarjeant A A, Nguyen S T, Hupp J T. J. Am. Chem. Soc., 2011, 133: 5652.
[49] Zou C, Zhang Z J, Xu X, Gong Q H, Li J, Wu C D. J. Am. Chem. Soc., 2012, 134: 87.
[50] Zhang Z J, Zhang L P, Wojtas L K, Eddaoudi M, Zaworotko M J. J. Am. Chem. Soc., 2012, 134: 928.
[51] Hagrman D, Hagrman P J, Zubieta J. Angew. Chem. Int. Ed., 1999, 38: 3165.
[52] Suslick K S, Bhyrappa P, Chou J H, Kosal M E, Nakagaki S, Smithenry D W, Wilson S R. Acc. Chem. Res., 2005, 38: 283.
[53] Takaishi S, DeMarco E J, Pellin M J, Farha O K, Hupp J T. Chem. Sci., 2013, 4: 1509.
[54] Wang X S, Chrzanowski M, Kim C, Gao W Y, Wojtas L, Chen Y S, Zhang P X, Ma S Q. Chem. Commun. , 2012, 48: 7173.
[55] Meng L, Cheng Q, Kim C, Gao W Y, Wojtas L, Chen Y S, Zaworotko M J, Zhang X P, Ma S Q. Angew. Chem. Int. Ed., 2012, 51: 10082.
[56] Wang X S, Chrzanowski M, Gao W Y, Wojtas L, Chen Y S, Zaworotko M J, Ma S Q. Chem. Sci. , 2012, 3: 2823.
[57] Wang X S, Chrzanowski M, Wojtas L, Chen Y S, Ma S Q. Chem. Eur. J., 2013, 19: 3297.
[58] Chen Y, Hoang T, Ma S Q. Inorg. Chem., 2012, 51: 12600.
[59] Yang X L, Xie M H, Zou C, He Y B, Chen B L, O'Keeffe M, Wu C D. J. Am. Chem. Soc., 2012, 134: 10638.
[60] Alkordi M H, Liu Y L, Larsen R W, Eubank J F, Eddaoudi M. J. Am. Chem. Soc., 2008, 130: 12639.
[61] Zhang Z J, Zhang L P, Wojtas L K, Nugent P, Eddaoudi M, Zaworotko M J. J. Am. Chem. Soc., 2012, 134: 924.
[62] Xie M H, Yang X L, Wu C D. Chem. Commun., 2011, 47: 5521.
[63] Jin S G, Son H J, Farha O K, Wiederrecht G P, Hupp J T. J. Am. Chem. Soc., 2013, 135 (3): 955.
[64] Son H J, Jin S G, Farha O K, Patwardhan S, Wezenberg S J, Jeong N C, So M, Wilmer C E, Sarjeant A A, Schatz G C, Snurr R Q, Farha O K, Wiederrecht G P, Hupp J T. J. Am. Chem. Soc., 2013, 135 (2): 862.
[65] Fateeva A, Chater P A, Ireland C P, Tahir A A, Khimyak Y Z, Wiper P V, Darwent J R, Rosseinsky M J. Angew. Chem. Int. Ed., 2012, 51: 7440.
[66] Xie M H, Yang X L, Zou C, Wu C D. Inorg. Chem., 2011, 50: 5318.
[67] Feng D W, Gu Z Y, Li J R, Jiang H L, Wei Z W, Zhou H C. Angew. Chem. Int. Ed., 2012, 51: 10307.
[68] Shaik S, Cohen S, Wang Y, Chen H, Kumar D, Thiel W. Chem. Rev., 2010, 110: 949.
[69] 史静(Shi J), 任楠(Ren N), 张亚红(Zhang Y H), 唐颐(Tang Y). 化学进展(Progress in Chemistry), 2009, 215 (9): 1750.
[70] Larsen R W, Wojtas L, Perman J, Musselman R L, Zaworotko M J, Vetromile C M. J. Am. Chem. Soc., 2011, 133: 10356.

[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[3] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[4] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[5] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[6] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[7] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[8] 林业竣, 李艳梅. 翻译后修饰Tau蛋白及其化学全/半合成[J]. 化学进展, 2022, 34(8): 1645-1660.
[9] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[10] 李兴龙, 傅尧. 糠醛氧化合成糠酸[J]. 化学进展, 2022, 34(6): 1263-1274.
[11] 王鹏, 刘欢, 杨妲. 烯烃的氢甲酰化串联反应研究[J]. 化学进展, 2022, 34(5): 1076-1087.
[12] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[13] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[14] 赵聪媛, 张静, 陈铮, 李建, 舒烈琳, 纪晓亮. 基于电活性菌群的生物电催化体系的有效构筑及其强化胞外电子传递过程的应用[J]. 化学进展, 2022, 34(2): 397-410.
[15] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.