English
新闻公告
More
化学进展 2014, Vol. 26 Issue (01): 214-222 DOI: 10.7536/PC130633 前一篇   

• 综述与评论 •

防覆冰涂层构建机理及制备

阎映弟1, 罗能镇2, 相咸高2, 徐义明2, 张庆华*1, 詹晓力1   

  1. 1. 浙江大学化学工程与生物工程学系 杭州 310027;
    2. 中建安装工程有限公司 南京 210046
  • 收稿日期:2013-06-01 修回日期:2013-09-01 出版日期:2014-01-15 发布日期:2013-11-08
  • 通讯作者: 张庆华,e-mail:qhzhang@zju.edu.cn E-mail:qhzhang@zju.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.21076184,21176212,21276224)资助

Fabricating Mechanism and Preparation of Anti-Icing & Icephobic Coating

Yan Yingdi1, Luo Nengzhen2, Xiang Xiangao2, Xu Yiming2, Zhang Qinghua*1, Zhan Xiaoli1   

  1. 1. Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China;
    2. China Construction Industrial Equipment Installation Co., Ltd., Nanjing 210046, China
  • Received:2013-06-01 Revised:2013-09-01 Online:2014-01-15 Published:2013-11-08
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21076184, 21176212, 21276224)

航空、通信、电力和运输设备的覆冰现象给人们的生产、生活带来许多不便,甚至引起重大经济损失,防覆冰涂层主要通过材料表面特殊物理化学性能与微相形貌来实现抗冰目的,这类材料需要兼具防结冰性和疏冰性,从延长结冰时间和降低冰的附着力两方面来减轻甚至消除冰雪积聚,是目前研究的热点。本文从防覆冰机理入手,深入探讨了防结冰性和疏冰性的影响因素,阐述了防覆冰涂层材料的设计与制备方面的最新进展,并对防覆冰涂层目前存在的问题与发展方向进行了分析和展望。

Ice adhesion and accretion on the facilities of aviation, telecommunication, electricity and transportation can lead to major inconvenience for our daily life and can even cause great economic losses. Therefore, it is worthwhile to study anti-icing and icephobic technology. Among all of them, concerning mechanical removing, electrothermal methods, spraying chemicals and coatings, anti-icing & icephobic coating is the research hotspot due to its obvious advantages such as low energy consumption, environmentally friendly and so on. It focuses on mitigating or even eliminating ice accumulation by extending freezing time and reducing ice adhesion strength. Extending freezing time is conducive to condensed water rolling off the substrates before it freezes via outside power, such as gravity, wind power and centrifugal force. Reducing ice adhesion strength makes de-icing procedure facile even if the condensed water has frozen on the substrates. It has been proved that by optimizing surface physicochemical properties and surface topography, both ideal effects can be achieved. On the basis of analyzing the mechanism, the influencing factors of anti-icing and icephobic properties are comprehensively discussed. Taking relative factors into consideration, a balance need to be reached between contradictory ones. Furthermore, the research progress of designing and fabricating anti-icing & icephobic coating is reviewed, including hydrophilic coating, hydrophobic coating and multi-functional composite coating. Finally, the prospective tendency of anti-icing & icephobic coating is proposed based on the current challenges.

Contents
1 Introduction
2 Mechanism for anti-icing & icephobic coating
2.1 Anti-icing
2.2 Icephobic
3 Progress in anti-icing & icephobic coating
3.1 Hydrophilic coating
3.2 Hydrophobic coating
3.3 Multi-functional composite coating
4 Prospective tendencies of anti-icing & icephobic coating
5 Conclusion

中图分类号: 

()

[1] Dalili N, Edrisy A, Carriveau R. Renew. Sust. Energ. Rev., 2009, 13(2): 428.
[2] Farzaneh M, Ryerson C C. Cold. Reg. Sci. Technol., 2011, 65(1SI): 1.
[3] Raraty L E, Tabor D. Proc. R. Soc. London, Ser. A-Mathematical and physical sciences, 1958, 245(1241): 184.
[4] Onda T, Shibuichi S, Satoh N. Langmuir, 1996, 12(9): 2125.
[5] Young T. Philos. Trans. R. Soc. London, 1805, 95: 65.
[6] Li Y, Huang X J, Heo S H. Langmuir, 2007, 23(4): 2169.
[7] Zhan X L, Luo Z H, Zhang Q H, Chen F Q. Chin. Chem. Lett., 2009, 20(6): 729.
[8] 王琼燕(Wang Q Y), 张庆华(Zhang Q H), 詹晓力(Zhan X L). 化学进展(Progress in Chemistry), 2009(10): 2183.
[9] Zhang Q H, Luo Z H, Zhan X L, Chen F Q. Chin. Chem. Lett., 2009, 20(4): 478.
[10] Wang Q Y, Zhang Q H, Zhan X L, Chen F Q. J. Polym. Sci., Part A: Polym. Chem., 2010, 48(12): 2584.
[11] 钱涛(Qiao T), 汪涓涓(Wang J J), 张庆华(Zhang Q H). 高等学校化学学报(Chemical Journal of Chinese Universities), 2013, (03): 703.
[12] Jindasuwan S, Nimittrakoolchai O, Sujaridworakun P. Thin Solid Films, 2009, 517(17): 5001.
[13] Wenzel R N. Ind. Eng. Chem. Res., 1936, 28: 988.
[14] Cassie A, Baxter S. Transations of the Faraday Society, 1944, 40: 546.
[15] Wu X, Wang W. J. Eng. Thermophys, 2003, 24(2): 286.
[16] Tourkine P, Le Merrer M, Quere D. Langmuir, 2009, 25(13): 7214.
[17] Guo P, Zheng Y M, Wen M X. Adv. Mater., 2012, 24(19): 2642.
[18] He M, Wang J J, Li H L. Soft Matter, 2011, 7(8): 3993.
[19] Boinovich L B, Emelyanenko A M. Mendeleev Commun., 2013, 23(1): 3.
[20] Jung S, Dorrestijn M, Raps D. Langmuir, 2011, 27(6): 3059.
[21] Carter J T. US8221847B2, 2012.
[22] Yang T, Yang Z J, Singla M. J. Cold. Reg. Eng., 2012, 26(2): 55.
[23] Olsen K, Larsen F M, Grabau P. US6612810B1, 2003.
[24] 荆忠(Jing Z). CN102260444A, 2011.
[25] 袁晓燕(Yuan X Y), 朱孔营(Zhu K Y), 周建伟(Zhou J W). CN102268222A, 2011.
[26] Meuler A J, Smith J D, Varanasi K K. ACS Appl. Mat. Interfaces, 2010, 2(11): 3100.
[27] Petrenko V F, Whitworth R W. Physics of Ice. Oxford: Oxford University Press, 1999.
[28] The Role of Deicing and Anti-icing in the Air Force. Air Force Aircraft and Airfield Deicing/Anti-icing. http://infohouse. p2ric. org/ref/01/00593. pdf. (1998-05)[2013-05].
[29] Dotan A, Dodiuk H, Laforte C. J. Adhes. Sci. Technol., 2009, 23(15): 1907.
[30] Menini R, Farzaneh M. J. Adhes. Sci. Technol., 2011, 25(9): 971.
[31] Kulinich S A, Farzaneh M. Langmuir, 2009, 25(16): 8854.
[32] Furmidge C G. J. Colloid Interface Sci., 1962, 17(4): 309.
[33] Gao L C, Mccarthy T J. Langmuir, 2008, 24(17): 9183.
[34] Gao L C, Mccarthy T J. Langmuir, 2009, 25(24): 14105.
[35] Sarshar M A, Swarctz C, Hunter S. Colloid. Polym. Sci., 2013, 291(2): 427.
[36] Autumn K, Sitti M, Liang Y A. Proc. Natil Acad. Sci. U. S. A., 2002, 99(19): 12252.
[37] Matsumoto K, Daikoku Y. Int. Jrefrig., 2009, 32(3): 444.
[38] Petrenko V F, Qi S G. J. Appl. Phys., 1999, 86(10): 5450.
[39] Peng S L, Petrenko V F, Arakawa M. Effect of self-assembling monolayers (SAMs) on ice adhesion to metals. Warrendale: Materials Research Society, 2000: 586, 261.
[40] Petrenko V F, Peng S. Can. J. Phys., 2003, 81(1/2): 387.
[41] Petrenko V F. J. Appl. Phys., 1994, 76(2): 1216.
[42] Ryzhkin I A, Petrenko V F. J. Phys. Chem. B, 1997, 101(32): 6267.
[43] Petrenko V F. J. Phys. Chem. B, 1997, 101(32): 6276.
[44] Ryzhkin I A, Petrenko V F. J Exp Theor Phys., 2005, 101(2): 317.
[45] Sarkar D K, Farzaneh M. J. Adhes. Sci. Technol., 2009, 23(9): 1215.
[46] Huang Y F, Hu M J, Yi S P. Thin Solid Flims, 2012, 520(17): 5644.
[47] Antonini C, Innocenti M, Horn T. J. Adhes. Sci. Technol., 2011, 67(1/2): 58.
[48] Karmouch R, Ross G G. J. Phys. Chem. C. 2010, 114(9): 4063.
[49] Varanasi K K, Hsu M, Bhate N. Appl. Phys. Lett., 2009, 95: 0941019.
[50] Kulinich S A, Farhadi S, Nose K. Langmuir, 2011, 27(1): 25.
[51] Jellinek H, Kachi H, Kittaka S. Colloid. Polym. Sci., 1978, 256(6): 544.
[52] Matsumoto K, Kobayashi T. Int. J. Refrig., 2007, 30(5): 851.
[53] Kako T, Nakajima A, Irie H. J. Mater. Sci., 2004, 39(2): 547.
[54] Nakajima A. J. Ceram. Soc. Jpn., 2004, 112(1310): 533.
[55] Meyers A, Leicht R, Wiesenfeld A. US5935488A, 1999.
[56] Attar. A. J. US2009294724-A1, 2009.
[57] 李辉(Li H), 赵蕴慧(Zhao Y H), 袁晓燕(Yuan X Y). 化学进展(Progress in Chemistry). 2012, 24: 2087.
[58] Yuan Z Q, Bin J P, Wang X. Polym. Eng. Sci., 2012, 52(11): 2310.
[59] Menini R, Ghalmi Z, Farzaneh M. Cold Reg. Sci. Technol., 2011, 65(1SI): 65.
[60] Saleema N, Farzaneh M, Paynter R W. J. Adhes. Sci. Technol., 2011, 25(1/3): 27.
[61] Momen G, Farzaneh M. Superhydrophobic RTV silicone rubber coatings on anodized aluminium surfaces. Stafa-Zurich: Trans. Tech. Publications LTD, 2012: 706/709, 2546.
[62] Momen G, Farzaneh M, Jafari R. Appl. Surf. Sci., 2011, 257(15): 6489.
[63] Lee H J. J. Mater. Sci., 2012, 47(13): 5114.
[64] Murase H, Nanishi K, Kogure H. J. Appl. Polym. Sci., 1994, 54(13): 2051.
[65] Murase H, Fujibayashi T. Prog. Org. Coat., 1997, 31(1/2): 97.
[66] Croutch V K, Hartley R A. J. Coat. Technol., 1992, 64(815): 41.
[67] Laforte C, Laforte L J, Carriere C J. How a Solid Coating Can Reduce the Adhesion of Ice on a Structure. Brno, Czech Republic: International Workshop on Atmospheric Icing on Structures, 2002, 9: 1.
[68] Liu Z L, Gou Y J, Wang J T, Cheng Sh Y. Int. J. Heat Mass Transfer, 2008, 51(25/26): 5975.
[69] Menini R, Farzaneh M. Polym. Int., 2008, 57(1): 77.
[70] Safaee A, Sarkar D K, Farzaneh M. Appl. Surf. Sci., 2008, 254(8): 2493.
[71] Saleema N, Farzaneh M. Appl. Surf. Sci., 2008, 254(9): 2690.
[72] Sarkar D K, Farzaneh M, Paynter R W. Mater. Lett., 2008, 62(8/9): 1226.
[73] Arianpour F, Farzaneh M, Kulinich S A. Appl. Surf. Sci., 2013, 265: 546.
[74] Feng L, Zhang Y A, Xi J M. Langmuir, 2008, 24(8): 4114.
[75] Liu X J, Liang Y M, Zhou F, Liu W M, Soft Matter, 2012, 8(7): 2070.
[76] Kulinich S A, Farzaneh M. Cold Reg. Sci. Technol., 2011, 65(1SI): 60.
[77] Cheng Y T, Rodak D E. Appl. Phys. Lett., 2005, 86: 14410114.
[78] Wilson P W, Lu W, Xu H. Phys. Chem. Chem. Phys., 2013, 15(2): 581.
[79] Kim P, Wong T, Alvarenga J, Kreder M J, Adorno-Martinez W E, Aizenberg J. ACS Nano, 2012. 6(8): 6569.
[80] He M, Zhang Q L, Zeng X P, Cui D P, Chen J, Li H L, Wang J J, Song Y L. Adv. Mater., 2013, 25(16): 2291.
[81] He M, Zhou X, Zeng X P, Cui D P, Zhang Q L, Chen J, Li H L, Wang J J, Cao Z X, Song Y L. Jiang L. Soft Matter, 2012, 8: 6680.
[82] Zheng Y M, Han D, Zhai J. Appl. Phys. Lett., 2008, 92: 0841068.
[83] 曲爱兰(Qu A L), 文秀芳(Wen X F), 皮丕辉(Pi P H). 化学进展(Progress in Chemistry), 2006, 18(11): 1434.
[84] 赵宁(Zhao N), 卢晓英(Lu X Y), 张晓艳(Zhang X Y). 化学进展(Progress in Chemistry), 2007, 19(6): 860.
[85] Momen G, Farzaneh M. Micro & Nano Lett., 2011, 6(6): 405.
[86] Li H, Zhao Y H, Yuan X Y. Soft Matter, 2013, 9(4): 1005.
[87] Charpentier T, Neville A, Millner P. J. Colloid Interface Sci., 2013, 394: 539.
[88] 张毅(Zhang Y), 葛宋(Ge S), 张相雄(Zhang X X). 2012年中国工程热物理学会传热传质学学术年会(The Science Symposium on Heat and Mass Transfer, Chinese Society of Engineering Thermophysics). (东莞), 2012.
[89] Xiao J, Chaudhuri S. Langmuir, 2012, 28(9): 4434.

[1] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[2] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[3] 王静, 于浩迪, 王俊坤, 袁玲, 任林, 高庆宇. 活性人工游泳体的螺旋运动[J]. 化学进展, 2023, 35(2): 206-218.
[4] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[5] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[6] 李晓光, 庞祥龙. 液体橡皮泥:属性特征、制备策略及应用探索[J]. 化学进展, 2022, 34(8): 1760-1771.
[7] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[8] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[9] 王许敏, 李书萍, 何仁杰, 余创, 谢佳, 程时杰. 准固相转化机制硫正极[J]. 化学进展, 2022, 34(4): 909-925.
[10] 尹晓庆, 陈玮豪, 邓博苑, 张佳路, 刘婉琪, 彭开铭. 超润湿膜在乳化液破乳中的应用及作用机制[J]. 化学进展, 2022, 34(3): 580-592.
[11] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[12] 牛小连, 刘柯君, 廖子明, 徐慧伦, 陈维毅, 黄棣. 基于骨组织工程的静电纺纳米纤维[J]. 化学进展, 2022, 34(2): 342-355.
[13] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.
[14] 吴明明, 林凯歌, 阿依登古丽·木合亚提, 陈诚. 超浸润光热材料的构筑及其多功能应用研究[J]. 化学进展, 2022, 34(10): 2302-2315.
[15] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
阅读次数
全文


摘要

防覆冰涂层构建机理及制备