English
新闻公告
More
化学进展 2014, Vol. 26 Issue (01): 158-166 DOI: 10.7536/PC130619 前一篇   后一篇

• 综述与评论 •

适用小分子化合物MALDI分析的基质研究

张森, 倪彧, 李树奇, 孔祥蕾*   

  1. 南开大学元素有机化学国家重点实验室 天津 300071
  • 收稿日期:2013-06-01 修回日期:2013-10-01 出版日期:2014-01-15 发布日期:2013-11-08
  • 通讯作者: 孔祥蕾,e-mail:kongxianglei@nankai.edu.cn E-mail:kongxianglei@nankai.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 21172121,21121002)资助

Matrixes for Small Molecule Analysis Based on MALDI-MS

Zhang Sen, Ni Yu, Li Shuqi, Kong Xianglei*   

  1. The State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
  • Received:2013-06-01 Revised:2013-10-01 Online:2014-01-15 Published:2013-11-08
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21172121, 21121002)

基质辅助激光解吸电离技术(matrix assisted laser desorption/ionization,MALDI)是20世纪80年代发展起来的一种应用于质谱分析的电离化技术。MALDI技术在生物大分子的分析和检测方面获得了良好的应用。由于受有机基质分子的干扰,MALDI在小分子化合物分析方面的应用受到很大的限制。近年来为解决这一问题,一些用于MALDI分析的新型材料被设计和开发出来。这些新型材料主要包括:碳、硅、纳米金属等无机材料和新型有机分子等。除此之外,在传统基质中添加表面活性剂和对分析物衍生化等方法也被成功应用于小分子化合物的MALDI质谱分析中。本文对这些可应用于小分子化合物分析的新型MALDI基质进行了综述和展望。

Matrix-assisted laser desorption/ionization(MALDI) is one of the most famous ionization methods in mass spectrometry developed in 1980s, and it has been widely applied in the analysis and detection of biological molecules. However,due to the interference from traditional organic matrix in low molar weight region, the application of MALDI in the analysis of low molecular weight samples is very limited. In order to solve the problem,new matrixes including inorganic materials based on carbon,silicon, nano-sized metal particles and some designed organic compounds for the analysis of low molecular weight compounds are investigated. These materials avoid the interference from matrix in the low mass region, and improve the ionization efficiency. In addition, the adding of surfactant to traditional organic matrixes and derivatization of analytes are also efficient methods to analyze low molecular weight compounds. This paper reviews the research progress of these new matrixes and their application in this research field. The tendency of the development of these matrixes and their application are further prospected and discussed.

Contents
1 Introduction
2 Inorganic materials
2.1 Silicon
2.2 Carbon
2.3 Metal or metal oxides
3 Organic molecules
3.1 Designed organic compunds
3.2 High molecular weight organic compounds
4 Ionic liquid
5 Other methods
5.1 Suppression of matrix-related ion
5.2 Derivatization of analyte
5.3 Sol-gels
6 Perspective

中图分类号: 

()

[1] Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T. Rapid Common. Mass Spectrom., 1988, 2: 151.
[2] Karas M, Bachmann D, Bahr U, Hillenkamp F. Int. J. Mass Spectrom. Ion Processes, 1987, 78: 53.
[3] Sunner J, Dratz E, Chen Y C. Anal. Chem., 1995, 67: 4335.
[4] Wei J, Buriak J M, Siuzdak G. Nature, 1999, 399: 243.
[5] Zou H, Zhang Q, Guo Z, Guo B, Zhang Q, Chen X. Angew. Chem. Int. Ed., 2002, 41: 646.
[6] Go E P, Prenni J E, Wei J, Jones A, Hall S C, Witkowska H E, Shen Z, Siuzdak G. Anal. Chem., 2003, 75: 2504.
[7] Thomas J J, Shen Z, Crowell J E, Finn M G, Siuzdak G. Proc. Natl. Acad. Sci. U. S. A., 2001, 98: 4932.
[8] Shen Z, Thomas J J, Averbuj C, Broo K M, Engelhard M, Crowell J E, Finn M G, Siuzdak G. Anal. Chem., 2001, 73: 612.
[9] Kruse R A, Li X, Bohn P W, Sweedler J V. Anal. Chem., 2001, 73: 3639.
[10] Mengistu T Z, DeSouza L, Morin S. Chem. Commun., 2005, 5659.
[11] Trauger S A, Go E P, Shen Z, Apon J V, Compton B J, Bouvier E S P, Finn M G, Siuzdak G. Anal. Chem., 2004, 76: 4484.
[12] Zhang Q, Zou H, Guo Z, Zhang Q, Chen X, Ni J. Rapid Commun. Mass Spectrom., 2001, 15: 217.
[13] Chen Y C, Wu J Y. Rapid Commun. Mass Spectrom., 2001, 15: 1899.
[14] Shenar N, Cantel S, Martinez J, Enjalbal C. Rapid Commun. Mass Spectrom., 2009, 23: 2371.
[15] Cuiffi J D. Anal. Chem., 2001, 73: 1292.
[16] Go E P, Apon J V, Luo G, Saghatelian A, Daniels R H, Sahi V, Dubrow R, Cravatt B F, Vertes A, Siuzdak G. Anal. Chem., 2005, 77: 1641.
[17] Piret G, Drobecq H, Coffinier Y, Melnyk O, Boukheroub R. Langmuir, 2010, 26: 1354.
[18] Wen X, Dagan S, Wysocki V H. Anal. Chem., 2007, 79: 434.
[19] Arold M, Piuzzi F, Jager C, Huisken F. Chemical Physics Letters, 2010, 484: 100.
[20] Li X, Wu X, Kim J M, Kim S S, Jin M, Li D. J. Am. Soc. Mass Spectrom., 2009, 20: 2167.
[21] Zhang Y, Wang X, Shan W, Wu B, Fan H, Yu X, Tang Y, Yang P. Angew. Chem. Int. Ed., 2005, 44: 615.
[22] Lee C, Lee J, Kang K, Song H, Kim I, Rhee H, Kim B. Biotechnol. Bioprocess Eng., 2007, 12: 174.
[23] Dale M J, Knochenmuss R, Zenobi R. Anal. Chem., 1996, 68: 3321.
[24] Zumbuhl S, Knochenmuss R, Wulfert S, Dubois F, Dale M J, Zenobi R. Anal. Chem., 1998, 70: 707.
[25] Crecelius A, Clench M R, Richards D S, Parr V. J. Chromatogr. A, 2002, 958: 249.
[26] Park K H, Kim H J. Rapid Commun. Mass Spectrom., 2001, 15: 1494.
[27] Black C, Poile C, Langley J, Herniman J. Rapid Commun. Mass Spectrom., 2006, 1053.
[28] 王振鹏(Wang Z P), 张舒(Zhang S), 辛斌(Xin B), 胡伟华(Hu W H), 王光辉(Wang G H), 熊少祥(Xiong S X). 质谱学报(Journal of Chinese Mass Spectrometry Society), 2007, 11: 21.
[29] Berger-Nicoletti E, Wurm F, Kilbinger A F M, Frey H. Macromolecules, 2007, 40: 746.
[30] Langley G J, Herniman J M, Townell M S. Rapid Commun. Mass Spectrom., 2007, 21: 180.
[31] Xu S, Li Y, Zou H, Qiu J, Guo Z, Guo B. Anal. Chem., 2003, 75: 6191.
[32] Pan C, Xu S, Zou H, Guo Z, Zhang Y, Guo B. J. Am. Soc. Mass Spectrom., 2005, 16: 263.
[33] Gholipour Y, Nonami H, Erra-Balsells R. J. Am. Soc. Mass Spectrom., 2008, 19: 1841.
[34] Chen W Y, Wang L S, Chiu H T, Chen Y C. J. Am. Soc. Mass Spectrom., 2004, 15: 1629.
[35] Ren S, Guo Y. Rapid Commun. Mass Spectrom., 2005, 19: 255.
[36] Pan C, Xu S, Hu L, Su X, Ou J, Zou H, Guo Z, Zhang Y, Guo B. J. Am. Soc. Mass Spectrom., 2005, 16: 883.
[37] Wang C, Li J, Yao S, Guo Y, Xia X. Analytica Chimica Acta, 2007, 604: 158.
[38] Ren S, Guo Y. J. Am. Soc. Mass Spectrom., 2006, 17: 1023.
[39] Dong X, Cheng J, Li J, Wang Y. Anal. Chem., 2010, 82: 6208.
[40] Zhou X, Wei Y, He Q, Boey F, Zhang Q, Zhang H. Chem. Commun., 2010, 6974.
[41] Zhang J, Dong X, Cheng J, Li J, Wang Y. J. Am. Soc. Mass Spectrom., 2011, 22: 1294.
[42] Lu M, Lai Y, Chen G, Cai Z. Anal. Chem., 2011, 83: 3161.
[43] Liu Y, Liu J, Yin P, Gao M, Deng C, Zhang X. J. Mass. Spectrom., 2011, 46: 804.
[44] Tang L A L, Wang J, Loh K P. J. Am. Chem. Soc., 2010, 132: 10976.
[45] Zhang S, Ding L, Li S, Kong X, Huang Y. Rapid Commun. Mass Spectrom., 2013, 27: 1278.
[46] Michalak L, Fisher K J, Alderdice D S, Jardine D, Willet G D. Org. Mass Spectrom., 1994, 29: 512.
[47] Hopwood F G, Michalak L, Alderdice D S, Fisher K J, Willet G D. Rapid Commun. Mass Spectrom., 1994, 8: 881.
[48] Szabo Z, Vallant R M, Takatsy A, Bakry R, Najam-ul-Haq M, Rainer M, Huck C W, Bonn G K. J. Mass Spectrom., 2010, 45: 545.
[49] Shiea J, Huang J P, Teng C F, Jeng J, Wang L Y, Chiang L Y. Anal. Chem., 2003, 75: 3587.
[50] Ugarov M V, Egan T, Khabashesku D V, Schultz J A, Peng H, Khabashesku V N, Furutani H, Prather K S, Wang H J, Jackson S N, Woods A S. Anal. Chem., 2004, 76: 6734.
[51] Kong X, Cheng P. Materials, 2010, 3: 1845.
[52] Chen Y C, Shiea J, Sunner J. J. Chromatogr. A, 1998, 826: 77.
[53] Han M, Sunner J. J. Am. Soc. Mass Spectrom., 2000, 11: 644.
[54] Chen S, Zheng H, Wang J, Hou J, He Q, Liu H, Xiong C, Kong X, Nie Z. Anal. Chem., 2013, 85: 6646.
[55] Lai E P C, Owega S, Kulczycki R. J. Mass Spectrom., 1998, 33: 554.
[56] Kinumi T, Saisu T, Takayama M, Niwa H. J. Mass Spectrom., 2000, 35: 417.
[57] Lorkiewicz P, Yappert M C. Anal. Chem., 2009, 81: 6596.
[58] Chen Z, Geng Z, Shao D, Mei Y, Wang Z. Anal. Chem., 2009, 81: 7625.
[59] Mclean J A, Stumpo K A, Russell D H. J. Am. Chem. Soc., 2005, 127: 5304.
[60] Sherrod S D, Diaz A J, Russell W K, Cremer P S, Russell D H. Anal. Chem., 2008, 80: 6796.
[61] Wu H P, Yu C J, Lin C Y, Lin Y H, Tseng W L. J. Am. Soc. Mass Spectrom., 2009, 20: 875.
[62] Lin P C, Tseng M C, Su A K, Chen Y J, Lin C C. Anal. Chem., 2007, 79: 3401.
[63] Chen C T, Chen Y C. Anal. Chem., 2005, 77: 5912.
[64] Yuan M, Shan Z, Tian B, Tu B, Yang P, Zhao D. Microporous and Mesoporous Materials, 2005, 78: 37.
[65] Chiang C K, Chiang N C, Lin Z H, Lan G Y, Lin Y W, Chang H T. J. Am. Soc. Mass Spectrom., 2010, 21: 1204.
[66] Gholipour Y, Giudicessi S L, Nonami H, Erra-Balsells R. Anal. Chem., 2010, 82: 5518.
[67] Ke Y, Kailasa S K, Wu H F, Nawaz M. J. Sep. Sci., 2010, 33: 3400.
[68] Watanabe T, Kawasaki H, Yonezawa T, Arakawa R. J. Mass Spectrom., 2008, 43: 1063.
[69] Kailasa S K, Kiran K, Wu H F. Anal. Chem., 2008, 80: 9681.
[70] Chiang C K, Yang Z, Lin Y W, Chen W T, Lin H J, Chang H T. Anal. Chem., 2010, 82: 4543.
[71] McCarley T D, McCarley R L, Limbach P A. Anal. Chem., 1998, 70: 4376.
[72] Macha S F, McCarley T D, Limbach P A. Analytica Chimica Acta, 1999, 397: 235.
[73] Vermillion-Salsbury R L, Hercules D M. Rapid Commun. Mass Spectrom., 2002, 16: 1575.
[74] Edwards J L, Kennedy R T. Anal. Chem., 2005, 77: 2201.
[75] Cerruti C D, Benabdellah F, Laprevote O, Touboul D, Brunelle A. Anal. Chem., 2012, 84: 2164.
[76] Shroff R, Muck A, Svatos A. Rapid Commun. Mass Spectrom., 2007, 21: 3295.
[77] Vaidyanathan S, Goodacre R. Rapid Commun. Mass Spectrom., 2007, 21: 2072.
[78] Shroff R, Svatos A. Anal. Chem., 2009, 81: 7954.
[79] Shroff R, Rulisek L, Doubsky J, Svatos A. Proc. Natl. Acad. Sci. U. S. A., 2009, 106: 10092.
[80] Chen S, Chen L, Wang J, Hou J, He Q, Liu J, Wang J, Xiong S, Yang G, Nie Z. Anal. Chem., 2012, 84: 10291.
[81] Chen R, Chen S, Xiong C, Ding X, Wu C C, Chang H C, Xiong S, Nie Z. J. Am. Soc. Mass Spectrom., 2012, 23: 1454.
[82] Zhang S, Liu J, Chen Y, Xiong S, Wang G, Chen J, Yang G. J. Am. Soc. Mass Spectrom., 2010, 21: 154.
[83] Mugo S M, Bottaro C S. Rapid Commun. Mass Spectrom., 2007, 21: 219.
[84] Jones R M, Lamb J H, Lim C K. Rapid Commun. Mass Spectrom., 1995, 9: 968.
[85] Chen Y T, Ling Y C. J. Mass Spectrom., 2002, 37: 716.
[86] Ayorinde F O, Hambright P, Porter T N, Keith Q L. Rapid Commun. Mass Spectrom., 1999, 13: 2474.
[87] Ayorinde F O, Gavin K, Saeed K. Rapid Commun. Mass Spectrom., 2000, 14: 608.
[88] Hlongwane C, Delves I G, Wan L W, Ayorinde F O. Rapid Commun. Mass Spectrom., 2001, 15: 2027.
[89] Ayorinde F O, Bezabeh D Z, Delves I G. Rapid Commun. Mass Spectrom., 2003, 17: 1735.
[90] Van Kampen J J A, Burgers P C, de Groot R, Luider T M. Anal. Chem., 2006, 78: 5403.
[91] Kampen J J A van, Verschren E J, Burgers P C, Luider T M, Groot R de, Osterhaus A D M E, Gruters R A. J. Chromatogr. B, 2007, 847: 38.
[92] Kosanam H, Prakash P K S, Yates C R, Miller D D, Ramagiri S. Anal. Chem., 2007, 79: 6020.
[93] Woldegiorgis A, Kieseritzky F V, Dahlstedt E, Hellberg J, Brinck T, Roeraade J. Rapid Commun. Mass Spectrom., 2004, 18: 841.
[94] Woldegiorgis A, Lowenhielm P, Bjork A, Roeraade J. Rapid Commun. Mass Spectrom., 2004, 18: 2904.
[95] Soltzberg L J, Patel P. Rapid Commun. Mass Spectrom., 2004, 18: 1455.
[96] Zabet-Moghaddam M, Heinzle E, Tholey A. Rapid Commun. Mass Spectrom., 2004, 18: 141.
[97] Santos L S, Haddad R, Hoehr N F, Pilli R A, Eberlin M N. Anal. Chem., 2004, 76: 2144.
[98] Catharino R R, Margues L de A, Santos L S, Baptista A S, Gloria E M, Calori-Domingues M A, Facco E M P, Eberlin M N. Anal. Chem., 2005, 77: 8155.
[99] Guo Z, Zhang Q, Zou H, Guo B, Ni J. Anal. Chem., 2002, 74: 1637.
[100] Su A K, Liu J T, Lin C H. Talanta, 2005, 67: 718.
[101] Su A, Liu J T, Lin C H. Analytica Chinica Acta, 2005, 546: 193.
[102] Grant D C, Helleur R J. Rapid Commun. Mass Spectrom., 2008, 22: 156.
[103] Grant D C, Helleur R J. Anal. Bioanal. Chem., 2008, 391: 2811.
[104] Grant D C, Helleur R J. Rapid Commun. Mass Spectrom., 2007, 21: 837.
[105] Gouw J W, Burgers P C, Trikoupis M A, Terlouw J K. Rapid Commun. Mass Spectrom., 2002, 16: 905.
[106] Tholey A, Wittmann C, Kang M J, Bungert D, Hollemeyer K, Heinzle E. J. Mass Spectrom., 2002, 37: 963.
[107] Lin Y S, Chen Y C. Anal. Chem., 2002, 74: 5793.

[1] 董秀婷, 张文, 赵颂, 刘新磊, 王宇新. 金属有机骨架材料的复合成型[J]. 化学进展, 2021, 33(12): 2173-2187.
[2] 冯勇, 李谕, 应光国. 基于过硫酸盐活化的微界面电子转移氧化技术[J]. 化学进展, 2021, 33(11): 2138-2149.
[3] 高玉霞, 梁云, 胡君, 巨勇. 基于天然小分子化合物的超分子手性自组装[J]. 化学进展, 2018, 30(6): 737-752.
[4] 董航, 张林, 陈欢林, 高从堦. 混合基质水处理膜:材料、制备与性能[J]. 化学进展, 2014, 26(12): 2007-2018.
[5] 刘杰, 江漫, 梅咏梅, 吴占超*, 匡少平. 白光发光二极管用单一基质白光荧光粉[J]. 化学进展, 2013, 25(12): 2068-2079.
[6] 晏菲, 刘向洋, 赵冬娇, 包炜幸, 董晓平, 奚凤娜*. 荧光金纳米团簇在小分子化合物检测中的应用[J]. 化学进展, 2013, 25(05): 799-808.
[7] 许志刚*, 刘智敏, 杨保民, 字富庭. 替代模板分子印迹技术在样品前处理中的应用[J]. 化学进展, 2012, 24(08): 1592-1598.
[8] 王红敏,张萍,黄琳娟,王仲孚. 基质辅助激光解吸电离质谱分析糖类物质* [J]. 化学进展, 2009, 21(6): 1335-1343.
[9] 张金超,王鹏,孙静,刘翠莲,陈华,黄健. 从稀土对骨代谢的影响看稀土的药用及安全性* [J]. 化学进展, 2009, 21(05): 919-928.
[10] 房学迅,扬金刚,史秀娟. 来源于天然产物的基质金属蛋白酶(MMPs)抑制剂[J]. 化学进展, 2007, 19(012): 1991-1998.
[11] 成峰,柳红,罗小民,蒋华良,沈竞康,陈凯先,嵇汝运. 基质金属蛋白酶抑制剂设计的研究进展*[J]. 化学进展, 2001, 13(04): 283-.