English
新闻公告
More
化学进展 2014, Vol. 26 Issue (01): 193-202 DOI: 10.7536/PC130612 前一篇   后一篇

• 综述与评论 •

甲状腺结合前清蛋白的理论研究

赵丽君, 雷鸣*   

  1. 北京化工大学理学院 现代药物研究所 化工资源有效利用国家重点实验室 北京 100029
  • 收稿日期:2013-06-01 修回日期:2013-09-01 出版日期:2014-01-15 发布日期:2013-11-08
  • 通讯作者: 雷鸣,e-mail:leim@mail.buct.edu.cn E-mail:leim@mail.buct.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 20703003,21072018,21373023)资助

Computational Chemical Studies on Transthyretin

Zhao Lijun, Lei Ming*   

  1. State Key Laboratory of Chemical Resource Engineering, Institute of Materia Medica, College of Science, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2013-06-01 Revised:2013-09-01 Online:2014-01-15 Published:2013-11-08
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 20703003, 21072018, 21373023)

甲状腺结合前清蛋白TTR是一种具有重要生理功能的蛋白质,它是约30种与淀粉样疾病相关的非同源蛋白中的一种。与TTR相关的淀粉样疾病主要有:家族淀粉化心肌疾病,家族淀粉化神经系统疾病,老年系统性淀粉样病变,以及中枢神经系统选择性淀粉化疾病等。这些疾病是由TTR四聚体解聚过程中错误折叠形成cross-β-sheet结构形态的淀粉样纤维所导致。本文介绍了TTR的生理功能及结构特征,并综述了到目前为止用分子动力学模拟、分子对接和定量构效关系等方法在研究TTR淀粉样机理及TTR和小分子相互作用过程中的计算化学研究成果,为基于TTR结构的TTR淀粉样抑制剂药物分子的设计和筛选提供有力参考。

Transthyretin (TTR) is a tetramer protein, and it is one of around 30 non-homologic amyloidogenic human proteins related to amyloid diseases. The diseases related to TTR amyloid include familial amyloid cardiomyopathy (FAC), familial amyloid polyneuropathy (FAP), senile systemic amyloidosis (SSA), and central nervous system-selective amyloidosis (CNSA). These diseases are proposed to be due to the formation of TTR amyloid and the construction of cross-β -sheet subunit via TTR misfolding. In this review, we describe the physiological characteristics and structural features of TTR, and summarize computational studies on TTR using molecular dynamics simulation, molecular docking and quantitative structure-activity relationships. These computational chemical studies demonstrate possible mechanisms of TTR amyloid formation and the binding abilities of small molecules and TTR, which may provide insights to discover and screen new inhibitors preventing TTR from misfolding.

Contents
1 Introduction
1.1 Physiological function and structural charac-teristics of TTR
1.2 Diseases caused by misfolding of TTR
1.3 Mechanisms of amyloid formation
1.4 Treatment of amyloid diseases
2 Molecular dynamic simulation on TTR
2.1 The mechanisms of TTR amyloid formation
2.2 The binding modes of small molecules with TTR
3 Molecular docking studies on TTR
4 Quantitative structure-activity relationship studies on TTR
5 Outlook

中图分类号: 

()

[1] Choi S, Ong D S T, Kelly J W. J. Am. Chem. Soc., 2010, 132: 1359.
[2] Johnson S M, Connelly S, Fearns C, Powers E T, Kelly J W. J. Mol. Bio., 2012, 421: 185.
[3] Hamilton J A, Benson M D. Cell. Mol. Life. Sci., 2001, 58: 1491.
[4] Nelson R, Sawaya M R, Balbirnie M, Madsen A O, Riekel C, Grothe R, Eisenberg D. Nature, 2005, 435(7034): 773.
[5] Sacchettini J C, Kelly J W. Nat. Rev. Drug Discov., 2002, 1(4): 267.
[6] Johnson S M, Wiseman R L, Sekijima Y, Green N S, Adamski-Werner S L, Kelly J W. Acc. Chem. Res., 2005, 38: 911.
[7] Haupt H, Heide K. Experientia, 1966, 22: 449.
[8] Palaninathan S K. Curr. Med. Chem., 2012: 2324.
[9] Blake C C, Geisow M J, Oatley S J, Rerat B, Rerat C. J. Mol. Bio., 1978, 121: 339.
[10] Lei M, Yang M F, Huo S H. J. Struct. Biol., 2004, 148: 153.
[11] Wojtczak A, Cody V, Luft J R, Pangborn W. Acta Crystallogr D, 1996, 52: 758.
[12] Nencetti S, Orlandini E. Curr. Med. Chem., 2012, 19: 2356.
[13] Hurshman A R, White J T, Powers E T, Kelly J W. Biochem., 2004, 43: 7365.
[14] Jahn T R, Radford S E. Arch. Biochem. Biophys., 2008, 469(1): 100.
[15] Liu K, Cho H S, Lashuel H A, Kelly J W, Wemmer D E. Nat. Struct. Bio., 2000, 7: 4.
[16] Lauro A, Diago Usò T, Masetti M, Di Benedetto F, Cautero N, De Ruvo N, Dazzi A, Quintini C, Begliomini B, Siniscalchi A, Ramacciato G, Risaliti A, Miller C M, Pinna A D. Transpl. Proc., 2005, 37: 2214.
[17] Hornsten R, Wiklund U, Olofsson B O, Hensen S M, Suhr O B. Transplantation, 2004, 78: 112.
[18] Ando Y, Ueda M. Curr. Med. Chem., 2012, 19: 2312
[19] Arsequell G, Planas A. Curr. Med. Chem., 2012, 19: 2343.
[20] Zhao L J, Zhang L R, Lei M. Sci. China-Chem., 2013, 56: 1550.
[21] Baures P W, Peterson S A, Kelly J W. Bioorg. Med. Chem., 1998, 6(8): 1389.
[22] Oza V B, Smith C, Raman P, Koepf E K, Lashuel H A, Petrassi H M, Chiang K P, Powers E T, Sachettinni J, Kelly J W. J. Med. Chem., 2002, 45(2): 321.
[23] Adamski-Werner S L, Palaninathan S K, Sacchettini J C, Kelly J W. J. Med. Chem., 2004, 47: 355.
[24] Klabunde T, Petrassi H M, Oza V B, Raman P, Kelly J W, Sacchettini J C. Nat. Struct. Biol., 2000, 7: 312.
[25] Gales L, Macero-Ribeiro S, Arsequell G, Valencia G, Saraiva M J, Damas A M. Biochem. J., 2005, 388: 615.
[26] Julius R L, Farha O K, Chiang J, Perry L L, Hawthorne M F. Proc. Natl. Acad. Sci. U. S. A., 2007, 104: 4808.
[27] Razavi H, Palaninathan S K, Powers E T, Wiseman R L, Purkey H E, Mohamedmohaideen N N, Deechongkit S, Chiang K P, Dendle M T A, Sacchettini J C, Kelly J W. Angew. Chem. Int. Edit., 2003, 42(24): 2758.
[28] Johnson S M, Petrassi H M, Palaninathan S K, Mohamedmohaideen N N, Purkey H E, Nichols C, Chiang K P, Walkup T, Sacchettini J C, Sharpless K B, Kelly J W. J. Med. Chem., 2005, 48(5): 1576.
[29] Hu Z H, Tang Y H, Wang H F, Zhang X, Lei M. Arch. Biochem. Biophys., 2008, 475(2): 140.
[30] Yuan T H, Zhang X, Hu Z H, Wang F, Lei M. Biopolymers, 2012, 97(12): 998.
[31] Yang M F, Lei M, Huo S H. Protein Sci., 2003, 12: 1222.
[32] Armen R S, Alonso D O V, Daggett V. Structure, 2004, 12: 1847.
[33] Armen R S, Demarco M L, Alonso D O V, Daggett V. Proc. Natl. Acad. Sci. U. S. A., 2004, 101: 11622.
[34] Pauling L, Corey R B. Proc. Natl. Acad. Sci. U. S. A., 1951, 37(5): 251.
[35] Correia B E. Protein Sci., 2006, 15: 28.
[36] Yang M F, Lei M, Yordanov B, Huo S H. J. Phys. Chem. B, 2006, 110(12): 5829.
[37] Yang M F, Lei M, Bruschweiler R, Huo S H. Biophy. J, 2005, 89: 433.
[38] Yang M F, Yordanov B, Levy Y, Bruschweiler R, Huo S H. Biochem., 2006, 45: 11992.
[39] Hammarstrom P, Schneider F, Kelly J W. Science, 2001, 293(5539): 2459.
[40] Steward R E, Armen R S, Daggett V. Pro. Eng. Des. Sel., 2008, 21: 187.
[41] Lim K H, Dyson H J, Kelly J W, Wright P E. J. Mol. Bio., 2013, 425(6): 977.
[42] Wang H F, Tang Y H, Lei M. Arch. Biochem. Biophys., 2007, 466: 85.
[43] 徐筱杰(Xu X J), 侯廷军(Hou T J), 乔学斌(Qiao X B), 章威(Zhang W). 计算机辅助药物分子设计(Computer-Aided Drug Design). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2004. 325.
[44] Maia F, Almeida M R, Gales L, Kijjoa A, Pinto M M M, Saraiva M J, Damas A M. Biochem. Pharmaco., 2005, 70: 1861.
[45] Gupta S, Chhibbe M, Sinha S, Surolia A. J. Med. Chem., 2007, 50: 5589.
[46] Rossi M, Caruso F, Opazo C, Salciccioli J. J. Agric. Food. Chem., 2008, 56: 10557.
[47] Connelly S, Choi S, Johnson S M, Kelly J W, Wilson I A. Cur. Opin. Struc. Bio., 2010, 20: 54.
[48] Palaninathan S K, Mohamedmohaideen N N, Orlandini E, Ortore G, Nencetti S, Lapucci A, Rossello A, Freundlich J S, Sacchettini J C. PLoS One, 2009, 4: e6290.
[49] Cao J, Lin Y, Guo L H, Zhang A Q, Wei Y, Yang Y. Toxicology, 2010, 277: 20.
[50] He Y W, Niu C W, Li H, Wen X, Xi Z. Sci. China-Chem., 2013, 56(3): 286.
[51] Zhu L L, Xu X J. Chinese J. Chem., 2003, 21(3): 261.
[52] Jana M W, Patrik L A, Marja H L, Pim E G L, Stefan P J L, Timo H. Toxicological Sci., 2009, 109: 206.
[53] Mairal T, Nieto J, Pinto M, Almeida M R, Gales L, Ballesteros A, Barluenga J, Perez J J, Vazquez J T, Centeno N B, Saraiva M J, Damas A M, Planas A, Arsequell G, Valencia G. PLoS One, 2009, 4: e4124.
[54] Blasi D, Arsequell G, Valencia G, Nieto J, Planas A, Pinto M, Centeno N B, Abad Z C, Quintana J. Mol. Inform., 2011, 30: 161.
[55] Natesan S, Wang T S, Lukacova V, Bartus V, Khandelwal A, Balaz S. J. Chem. Inf. Model, 2011: 1132.
[56] Pinto M, Blasi D, Nieto J, Arsequell G, Valencia G, Planas A, Centeno N B, Quintana J, Centeno N B. Amyloid, 2011, 18: 51.
[57] Simões C J, Mukherjee T, Brito R M, Jackson R M. J. Chem. Inf. Model., 2010, 50: 1806.

[1] 张芳娟, 刘海兵, 高梦琪, 王德富, 牛颜冰, 申少斐. 浓度梯度微流控芯片在药物筛选中的应用[J]. 化学进展, 2021, 33(7): 1138-1151.
[2] 张维佳, 邵学广, 蔡文生. 抗冻蛋白抗冻机制的分子模拟研究[J]. 化学进展, 2021, 33(10): 1797-1811.
[3] 陈淏川, 付浩浩, 邵学广, 蔡文生. 重要性采样方法与自由能计算[J]. 化学进展, 2018, 30(7): 921-931.
[4] 雷东升, 童慧敏, 张磊, 张星, 张胜利, 任罡. 胆固醇酯转移蛋白在胆固醇酯转移中的结构与功能[J]. 化学进展, 2014, 26(05): 879-888.
[5] 常姗燕, 刘夫锋*. 三磷酸腺苷结合盒式转运体的分子模拟[J]. 化学进展, 2013, 25(07): 1208-1218.
[6] 陈景飞, 郝京诚. 表面活性剂溶液行为的粗粒化模拟[J]. 化学进展, 2012, (10): 1890-1896.
[7] 巫瑞波, 曹泽星*, 张颖凯*. 锌酶的计算模拟:挑战与最新进展[J]. 化学进展, 2012, 24(06): 1175-1184.
[8] 金海晓 严小军 朱鹏. PKA酶及其抑制剂balanol的计算化学*[J]. 化学进展, 2010, 22(05): 993-1001.
[9] 卢时湧 吴章桂 叶伟东 吴国锋 潘一斌 钱俊青. 应用前沿亲和色谱研究分子之间相互作用及其应用[J]. 化学进展, 2010, 22(01): 148-152.
[10] 郑燕升,莫倩,孟陆丽,程谦伟. 室温离子液体的分子动力学模拟[J]. 化学进展, 2009, 21(0708): 1427-1433.
[11] 邓平晔,张冬海,田亚峻,陈运法,丁辉. 自组装的分子动力学模拟[J]. 化学进展, 2007, 19(9): 1249-1257.
[12] 叶德举,罗小民,沈建华,朱维良,沈旭,蒋华良,柳红. 先导化合物的发现——整合计算机虚拟筛选、化学合成和生物测试方法*[J]. 化学进展, 2007, 19(012): 1939-1946.
[13] 梁桂兆,梅虎,周原,李志良. 计算机辅助药物设计中的多维定量构效关系模型化方法[J]. 化学进展, 2006, 18(01): 120-130.
[14] 蔡文生,林翼,邵学广. 团簇研究中的原子间势函数*[J]. 化学进展, 2005, 17(04): 588-596.
[15] 丁俊杰 丁晓琴 赵立峰 陈冀胜. 多肽定量构效关系与分子设计[J]. 化学进展, 2005, 17(01): 130-136.
阅读次数
全文


摘要

甲状腺结合前清蛋白的理论研究