English
新闻公告
More
化学进展 2014, Vol. 26 Issue (01): 203-213 DOI: 10.7536/PC130602 前一篇   后一篇

• 综述与评论 •

预处理技术在生物质热化学转化中的应用

刘华敏*1, 马明国2, 刘玉兰1   

  1. 1. 河南工业大学粮油食品学院 郑州 450001;
    2. 北京林业大学林木生物质化学北京市重点实验室 北京 100083
  • 收稿日期:2013-06-01 修回日期:2013-09-01 出版日期:2014-01-15 发布日期:2013-11-08
  • 通讯作者: 刘华敏,e-mail:liuhuamin5108@163.com E-mail:liuhuamin5108@163.com
  • 基金资助:

    国家自然科学基金项目(No.31070511)和河南工业大学博士基金(No.2013BS018)资助

Applications of Pretreatment in Biomass Thermo-Chemical Conversion Technology

Liu Huamin*1, Ma Mingguo2, Liu Yulan1   

  1. 1. College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China;
    2. Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
  • Received:2013-06-01 Revised:2013-09-01 Online:2014-01-15 Published:2013-11-08
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 31070511) and the Doctor Research Fund of Henan University of Technology (No. 2013BS018)

随着化石燃料的不断消耗和气候的变化,生物质能作为一种可再生能源越来越受到关注。生物质可以通过生物法和热化学法转化成有用的燃料,热化学转化技术因其可以将生物质高效地转化生成气体、液体和固体燃料使其占有主导地位。对生物质进行预处理可以改变其物理化学特性,并且这些改变影响着后期热化学转化生物质产品的品质和收率。本文综述了生物质预处理技术在热化学转化技术方面的应用进展。对生物质进行烘焙预处理改变其可磨性,疏水性。生物质热裂解之前对原料进行脱灰分减少了生物质中的灰分,改变了生物质热裂解液化的产品分布。预处理液化相对直接高压液化生物油收率大大提高,同时最优化反应温度也大大降低。

With the increasing consumption of fossil fuels and the growing concerns about climate change, biomass is drawing increasing attention as a renewable energy source due to its advantages of renewal and abundance. Biomass can be converted into energy using bio-chemical and thermo-chemical processes, but the thermo-chemical conversion technology finds its dominance because of high efficient conversion to gas, liquid and solid products under thermal conditions. Biomass pretreatment can alter the physical features and chemical composition/structure of lignocellulosic materials. The pretreatment step has a significant influence on the quality and yield of products obtained from thermo-chemical conversion biomass. In this review, we discuss the applications of various pretreatment methods in the biomass thermo-chemical conversion, including torrefaction and gasification, pretreatment and biomass pyrolysis, pretreatment and biomass liquefaction. Torrefaction improves the hydrophobicity and grindability characteristics of biomass materials. Water or acid washing pretreatment can remove metal ions from biomass and the change in products distribution during the biomass pyrolysis is more obvious. Biomass pretreatment and liquefaction can increase the bio-oil yield and decrease the optimum reaction temperature compared to the untreated biomass liquefaction experiments.

Contents
1 Introduction
2 Main methods of biomass pretreatment
3 Pretreatment and thermo-chemical conversion biomass
3.1 Torrefaction and biomass gasification
3.2 Pretreatment and biomass pyrolysis
3.3 Pretreatment and biomass liquefaction
4 Conclusion and outlook

中图分类号: 

()

[1] Li J, Wu L, Yang Z. J. Anal. Appl. Pyrol., 2008, 81: 199.
[2] Blanca A L, Juan L T G. Biofuel. Bioprod. Bior., 2008, 2: 455.
[3] Zhang X, Xu M, Sun R, Sun L. J. Eng. Gas Turbines Power, 2006, 128: 493.
[4] Pu Y, Zhang D, Singh P M, Ragauskas A J. Biofuel. Bioprod. Bior., 2: 58.
[5] Hsu T A, Ladisch M R, Tsao G T. Chemical Technology, 1980, 10: 315.
[6] Wu L, Arakane M, Ike M, Wada M, Takai T, Gau M, Tokuyasu K. Bioresour. Technol., 2011, 102: 4793.
[7] Mazaheri H, Lee K T, Bhatia S, Mohamed A R. Bioresour. Technol., 2010, 101: 745.
[8] Harun R, Danquah M K. Process Biochem., 2011, 46: 304.
[9] Akin D E, Rigsby L L, Sethuraman A, Morrison W H, Gamble G R, Eriksson K E. Appl. Environ. Microbiol., 1995, 61: 1591.
[10] Rabelo S C, Filho R M, Costa A C. Appl. Biochem. Biotechnol., 2009, 153: 139.
[11] Fan H, Ragauskas A. Bioenerg. Res., 2012, 5: 1043.
[12] Wyman C E, Balan V, Dale B E, Elander R T, Falls M, Hames B, Holtzapple M T, Ladisch M R, Lee Y Y, Mosier N, Pallapolu V R, Shi J, Thomas S R, Warner R E. Bioresour. Technol., 2011, 102: 11052.
[13] Zhang J, Ma X, Yu J, Zhang X, Tan T. Bioresour. Technol., 2011, 102: 4585.
[14] Liu C G, Wyman C E. Ind. Eng. Chem. Res., 2004, 43: 2781.
[15] Foston M, Ragauskas A J. Biomass Bioenerg., 2010, 34: 1885.
[16] Russell J B. J. Appl. Bacteriol., 1992, 73: 363.
[17] Liu Z L, Slininger P J, Gorsich S W. Appl. Biochem. Biotechnol., 2005, 121/124: 451.
[18] Van Walsum G P, Allen S G, Spencer M J, Laser M S, Antal M J, Lynd L R. Appl. Biochem. Biotechnol., 1996, 57/58: 157.
[19] Jacobsen S E, Wyman C E. Ind. Eng. Chem. Res., 2002, 41: 1454.
[20] Yu Y, Wu H W. Ind. Eng. Chem. Res., 2010, 49: 3902.
[21] Taherzadeh M J, Karimi K. Bioresources, 2007, 2: 707.
[22] Carvalheiro F, Duarte L C, Girio F M. J. Sci. Ind. Res., 2008, 67: 849.
[23] Sun Y, Cheng J. Bioresour. Technol., 2002, 83: 1.
[24] Zheng Y, Pan Z, Zhang R. J. Agric. Biol. Eng., 2009, 2: 51.
[25] Lu W, Wang W, Yang Z. Bioresour. Technol., 2009, 100: 6451.
[26] Liu Z, Zhang F S. Energ. Convers. Manage., 2009, 49: 3498.
[27] Demirbas A. Energy Convers. Manage., 2001, 42: 1357.
[28] Jena U, Vaidyanathan N, Chinnasamy S, Das K C. Bioresour. Technol., 2011, 102: 3380.
[29] Ptasinski K J. Biofuels, Bioprod. Biorefin., 2008, 2: 239.
[30] Bridgewater A V. Fuel, 1995, 74: 631.
[31] Pimchuai A, Dutta A, Basu P. Energ. Fuel, 2010, 24: 4638.
[32] Prins M J, Ptasinski K J. Energy, 2005, 30: 982.
[33] Prins M J, Ptasinski K J, Janssen F G. Energy, 2006, 31: 3458.
[34] van der Stelt M J C, Gerhauser H, Kiel J H A, Ptasinski K J. Biomass Bioenerg., 2011, 35: 3748.
[35] Devi L, Ptansinski K J, Janssen F G. Biomass Bioenerg., 2003, 24: 125.
[36] Chen Q, Zhou J S, Liu B J, Mei Q F, Luo Z Y. 2011, 56: 1450.
[37] Deng J, Wang G J, Kuang J H, Zhang Y L, Luo Y H. J. Anal. Appl. Pyrol., 2009, 86: 331.
[38] Arias B, Pevida C, Fermoso J, Plaza M G, Rubiera F, Pis J J. Fuel Process. Technol., 2008, 89: 169.
[39] Svoboda K, Pohorel M, Hartman M, Martinec J. Fuel Process. Technol., 2009, 90: 629.
[40] Gomez L D, Steele-King C, McQueen-Mason S J. New Phytol., 2008, 178: 473.
[41] Chen W H, Kuo P C. Energy, 2010, 35: 2580.
[42] Chen W H, Wu J S. Energy, 2009, 34: 1458.
[43] Chen W H, Tu Y J, Sheen H K. Int. J. Energ. Res., 2010, 34: 265.
[44] Antal M J. Advances in Solar Energy, 1983, 11: 61.
[45] Mansaray K G, Ghaly A E. Bioresour. Technol., 1998, 65: 13.
[46] Acharya B, Sule I, Dutta A. Biomass Conv. Bioref., 2012, 2: 349.
[47] Bridgeman T G, Jones J M, Shield I, Williams P T. Fuel, 2008, 87: 844.
[48] Uslu A, Faaij A P C, Bergman P C A. Energy, 2008, 33: 1206.
[49] Rousset P, Davrieux F, Macedo L, Perré P. Biomass Bioenerg., 2011, 35: 1219.
[50] Ciolkosz K, Wallace R. Biofuels, Bioprod. Biorefin., 2011, 5: 317.
[51] Chen W H, Hsu H C, Lu K M, Lee W J, Lin T C. Energy, 2011, 36: 3012.
[52] Chen W H, Hsu H C, Lu K M, Huang Y P A. Appl. Energ., 2011, 88: 3636.
[53] Prins M J, Ptasinski K J, Janssen F G. 2006, J. Anal. Appl. Pyrol., 77: 28.
[54] Prins M J, Ptasinski K J, Janssen F G. J. Anal. Appl. Pyrol., 2006, 77: 35.
[55] Couhert C, Salvador S, Commandré J M. Fuel, 2009, 88: 2286.
[56] Svoboda K, Poho D?elý M, Hartman M, Martinec J. Fuel Process. Technol., 2009, 90: 629.
[57] Zwart R W J, Boerrigter H, Drift A V D. Energ. Fuel., 2006, 20: 2192.
[58] Uslu A, Faaij A, Bergman P C A. Energy, 2008, 33: 1206.
[59] Carlson T R, Cheng Y T, Jae J, Huber G W. Energ. Environ. Sci., 2011, 4: 145.
[60] Carlson T R, Jae J, Lin Y C, Tompsett G A, Huber G W. J. Catal., 2010, 270: 110.
[61] Li X Y, Su L, Wang Y J, Yu Y Q, Wang C W, Li X L, Wang Z H. Environ. Sci. Eng., 2012, 6: 1079.
[62] Mihalcik D J, Mullen C A, Boateng A A. J. Anal. Appl. Pyrol., 2011, 92: 224.
[63] Mullen C A, Boateng A A. Fuel Process. Technol., 2010, 91: 1446.
[64] Alonso D M, Bond J Q, Dumesic J A. Green Chem., 2010, 12: 1493.
[65] Zakzeski J, Bruijnincx P C A, Jongerius A L, Weckhuysen B M. Chem. Rev., 2010, 110: 3552.
[66] Yang X, Zeng Y, Ma F, Zhang X, Yu H. Bioresour. Technol., 2010, 101: 5475.
[67] Tan H, Wang S R. J. Fuel Chem. Technol., 2009, 37: 668.
[68] Das P, Ganesh A, Wangikar P. Biomass Bioenerg., 2004, 27: 445.
[69] Aguado J, Serrano D P, Miguel G S, Castro M C, Madrid S. J. Anal. Appl. Pyrol., 2006, 79: 415.
[70] Boateng A A, Hicks K B, Flores R A, Gutsol A. J. Anal. Appl. Pyrol., 2006, 78: 95.
[71] Misson M, Haron R, Kamaroddin F M A, Amin N A S. Bioresour. Technol., 2009, 100: 2867.
[72] Mosier N, Wyman C, Dale B, Elander R, Lee Y, Holtzapple M, Ladisch M. Bioresour. Technol., 2005, 96: 673.
[73] Johnson R L, Liaw S S, Garcia-Perez M, Ha S, Sean S Y L, Armando G M, Chen S. Energ. Fuel., 2009, 23: 6242.
[74] Zeng Y, Yang X, Yu H, Zhang X, Ma F. J. Agr. Food Chem., 59: 9965.
[75] Yu Y, Zeng Y, Zuo J, Ma F, Yang X, Zhang X, Wang Y. Bioresour. Technol., 2013, 134: 198.
[76] Hammerschmidt A, Boukis N, Hauer E, Galla U, Dinjus E, Hitzmann B, Larsen T, Nygaard S D. Fuel, 2011, 90: 555.
[77] Liu H M, Xie X A, Li M F, Sun R C. J. Ana. App. Pyrol., 2012, 94: 177.
[78] Makabe M, Ouchi K. Fuel, 1981, 60: 443.
[79] Demirbas A. Energ. Convers. Manage., 2000, 41: 633.
[80] Wan C, Li Y. Enzyme Microb. Tech., 2010, 47: 31.
[81] Sun R C, Fang J M, Tomkinson J. Ind. Crop. Prod., 2000, 12: 71.
[82] Liu H M, Feng B, Sun R C. Ind. Eng. Chem. Res., 2011, 50: 10928.
[83] Liu H M, Feng B, Sun R C. J. Agr. Food Chem., 2011, 59: 10524.
[84] Liu H M, Li M F, Cao X F, Sun R C. Energy Technology, 2013, 1: 70.
[85] Shi W, Li S, Jia J, Zhao Y. Ind. Eng. Chem. Res., 2013, 52: 586.
[86] Shi W, Jia J, Guo Y, Zhao Y. Bioresour. Technol., 2013, 146: 355.
[87] Grierer J. Wood Sci. Technol., 1986, 19: 289.

[1] 周天瑜, 王彦博, 赵翌琳, 李洪吉, 刘春波, 车广波. 水相识别分子印迹聚合物在样品预处理中的应用[J]. 化学进展, 2022, 34(5): 1124-1135.
[2] 徐永洞, 刘志丹. 生物质水热液化水相产物形成机理及资源回收[J]. 化学进展, 2021, 33(11): 2150-2162.
[3] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[4] 黄秉乾, 王立艳, 韦漩, 徐伟超, 孙振, 李庭刚. 低共熔溶剂预处理木质纤维素生产生物丁醇[J]. 化学进展, 2020, 32(12): 2034-2048.
[5] 白蕾, 王艳凤, 霍淑慧, 卢小泉. 金属-有机骨架及其功能材料在食品和水有害物质预处理中的应用[J]. 化学进展, 2019, 31(1): 191-200.
[6] 吕记巍, 敖先权*, 陈前林, 谢燕, 曹阳, 张纪芳. 煤气化可弃型催化剂[J]. 化学进展, 2018, 30(9): 1455-1462.
[7] 蒋叶涛, 宋晓强, 孙勇*, 曾宪海, 唐兴, 林鹿*. 基于木质生物质分级利用的组分优先分离策略[J]. 化学进展, 2017, 29(10): 1273-1284.
[8] 詹昊, 张晓鸿, 阴秀丽, 吴创之. 生物质热化学转化过程含N污染物形成研究[J]. 化学进展, 2016, 28(12): 1880-1890.
[9] 王瑞莹, 张超艳, 王淑萍, 周友亚. 磁性金属-有机骨架材料的合成及其应用[J]. 化学进展, 2015, 27(7): 945-952.
[10] 周素坤, 毛健贞, 许凤. 微纤化纤维素的制备及应用[J]. 化学进展, 2014, 26(10): 1752-1762.
[11] 陆克定 张远航. HOx自由基的实地测量及其化学机制解析*[J]. 化学进展, 2010, 22(0203): 500-514.
[12] 晏波,韦朝海. 超临界水气化有机物制氢研究*[J]. 化学进展, 2008, 20(10): 1553-1561.
[13] 赵岩,王洪涛,陆文静,李冬. 秸秆超(亚)临界水预处理与水解技术*[J]. 化学进展, 2007, 19(11): 1832-1838.
[14] 许光文,纪文峰,万印华,刘春朝. 轻工业纤维素生物质过程残渣能源化技术*[J]. 化学进展, 2007, 19(0708): 1164-1176.
[15] 刘莉,孙君社,康利平,刘萍. 甜高粱茎秆生产燃料乙醇*[J]. 化学进展, 2007, 19(0708): 1109-1115.