English
新闻公告
More
化学进展 2014, Vol. 26 Issue (01): 152-157 DOI: 10.7536/PC130548 前一篇   后一篇

• 综述与评论 •

巯-烯点击反应在毛细管整体柱制备中的应用

熊喜悦1, 彭泽强2, 舒彦1, 何海琴1, 陈应庄*1, 陈波1   

  1. 1. 湖南师范大学 化学生物学及中药分析省部共建教育部重点实验室 长沙 410081;
    2. 湖南新麓南环保工程有限公司 长沙 410081
  • 收稿日期:2013-05-01 修回日期:2013-10-01 出版日期:2014-01-15 发布日期:2013-11-08
  • 通讯作者: 陈应庄,e-mail:yingzhuangchen2012@163.com E-mail:yingzhuangchen2012@163.com

Application of Thiol-Ene “Click” Reactions in the Preparation of Monolithic Columns

Xiong Xiyue1, Peng Zeqiang2, Shu Yan1, He Haiqin1, Chen Yingzhuang*1, Chen Bo1   

  1. 1. Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Hunan Normal University, Changsha 410081, China;
    2. Lu Nan Environmental Protection Engineering Co., Ltd., Changsha 410081, China
  • Received:2013-05-01 Revised:2013-10-01 Online:2014-01-15 Published:2013-11-08

毛细管整体柱由于具备高效的传质性能、分离性能以及灵活的可设计性,受到科研工作者的广泛关注。整体柱制备过程中,功能基团的引入是关键点之一。近年来研究者们将一种简单高效、定向性强的反应-“巯-烯点击反应”引入整体柱的制备中,由于含巯基、含烯键的配体和单体具有非常广泛的可选择性,因而使整体柱材料更加多样化。本文从整体柱的特征、分类及制备方法出发,阐述了传统整体柱制备方法的局限性以及引入巯-烯点击反应的优势。并且分别从两个方面重点综述了“巯-烯点击反应”在整体柱制备中的应用:即利用巯-烯点击反应对表面含烯键或者巯基的整体柱进行表面修饰以及基于巯-烯点击反应“一锅法”制备的杂化整体柱。最后展望了巯-烯点击反应在整体柱制备领域的发展前景。

Due to the easier preparation, better permeability and higher column efficiency over traditional packed columns, monolithic columns have gained increasing interest as separation media in all chromatographic methods. In recent years, with the rapid development of nanoscale chromatographic separation systems, the use of capillary monolithic columns have emerged as a promising choice. According to the chemical composition of monoliths, monolithic columns can be mainly classified into organic polymer-based, silica-based and organic-silica hybrid monolithic columns. Each of monoliths is tended to be prepared with versatile functionality. However, silica-based monoliths aways suffer from limited silylating reagents and complex processes of modifications, and conventional approaches of preparing polymer-based monoliths and organic-silica hybrid monoliths also prevent their development due to the special requirements of functional monomers (possess vinyl or acrylate groups). Recently, thiol-ene "click" reaction has already received extensive attention in the field of monolith preparation owing to its exceptional versatility and propensity for the quantitative conversions under mild conditions, extending the choice of categories of functional monomers to some extent. Herein, the fabrication approaches are comprehensively summarized with two routes: (1) surface modification of monoliths via thiol-ene "click" reaction, (2) "one-pot" synthesis of monolithic columns via thiol-ene "click" reaction.

Contents
1 Introduction
2 Application of thiol-ene "click" reaction in the field of monolith preparation
2.1 Surface modification of monoliths via thiol-ene "click" reaction
2.2 "One-pot" synthesis of monolithic columns via thiol-ene "click" reaction
3 Conclusion and outlook

中图分类号: 

()

[1] Ishizuka N, Kobayashi H, Minakuchi H, Nakanishi K, Hirao K, Hosoya K, Ikegami T, Tanaka N. J. Chromatogr. A, 2002, 960: 85.
[2] Hara T, Kobayashi H, Ikegami T, Nakanishi K, Tanaka N. Anal. Chem., 2006, 78: 7632.
[3] Gusev I, Huang X, Horvath C. J. Chromatogr. A, 1999, 855: 273.
[4] Premstaller A, Oberacher H, Huber C G. Anal. Chem., 2000, 72, 4386.
[5] Holdšvendová P, Coufal P, Suchánková J, Tesa D?ová E, Bosakova Z. J. Sep. Sci., 2003, 26: 1623.
[6] Moravcová D, Jandera P, Urban J, Planeta J. J. Sep. Sci., 2003, 26: 1005.
[7] Ueki Y, Umemura T, Li J, Odake T, Tsunoda K. Anal. Chem., 2004, 76: 7007.
[8] Temporini C, Calleri E, Campese D, Cabrera K, Felix G, Massolini G. J. Sep. Sci., 2007, 30: 3069.
[9] Mallik R, Jiang T, Hage D S. Anal. Chem., 2004, 76: 7013.
[10] Wang S, Zhang R. Sep. Sci. Technol., 2007, 42: 1079.
[11] Li Y, Chen Y, Xiang R, Ciuparu D, Pfefferle L D, Horvath C, Wilkins J A. Anal. Chem., 2005, 77: 1398.
[12] Li Y, Xiang R, Horvath C, Wilkins J A. Electrophoresis, 2004, 25: 545.
[13] Kacprzak K M, Maier N M, Lindner W. J. Chromatog. A, 2011, 1218: 1452.
[14] Salwiński A, Roy V, Agrofoglio L A, Delépée R. Macromol. Chem. Phys., 2011, 212: 2700.
[15] Celebi B, Bayraktar A, Tuncel A. Anal. Bioanal. Chem., 2012, 403: 2655.
[16] Slater M D, Frechet J M, Svec F. J. Sep. Sci., 2009, 32: 21.
[17] Guerrouache M, Millot M C, Carbonnier B. Macromol. Rapid Commun., 2009, 30: 109.
[18] Hayes J D, Malik A. Anal. Chem., 2000, 72: 4090.
[19] Yan L, Zhang Q, Zhang J, Zhang L, Li T, Feng Y, Zhang W, Zhang Y. J. Chromatogr. A, 2004, 1046: 255.
[20] Yan L J, Zhang Q H, Feng Y Q, Zhang W B, Li T, Zhang L H, Zhang Y K. J. Chromatogr. A, 2006, 1121: 92.
[21] Xu L, Lee H K. J. Chromatogr. A, 2008, 1195: 78.
[22] Li Y, Song C, Zhang L, Zhang W, Fu H. Talanta, 2010, 80: 1378.
[23] Tian Y, Zhang L, Zeng Z, Li H. Electrophoresis, 2008, 29: 960.
[24] Chen Y, Wu M, Wang K, Chen B, Yao S, Zou H, Nie L. J. Chromatogr. A, 2011, 1218: 7982.
[25] Ma J, Liang Z, Qiao X, Deng Q, Tao D, Zhang L, Zhang Y. Anal. Chem., 2008, 80: 2949.
[26] Wu M, Chen Y, Wu R, Li R, Zou H, Chen B, Yao S. J. Chromatogr. A, 2010, 1217: 4389.
[27] Wu M, Wu R, Wang F, Ren L, Dong J, Liu Z, Zou H. Anal. Chem., 2009, 81: 3529.
[28] Dong M, Wu M, Wang F, Qin H, Han G, Dong J, Wu R, Ye M, Liu Z, Zou H. Anal. Chem., 2010, 82: 2907.
[29] Zhang Z, Wu M, Wu R, Dong J, Ou J, Zou H. Anal. Chem., 2011, 83: 3616.
[30] Campos L M, Killops K L, Sakai R, Paulusse J M, Damiron D, Drockenmuller E, Messmore B W, Hawker C J. Macromolecules, 2008, 41: 7063.
[31] Campos L M, Meinel I, Guino R G, Schierhorn M, Gupta N, Stucky G D, Hawker C J. Adv. Mater., 2008, 20: 3728.
[32] Killops K L, Campos L M, Hawker C J. J. Am. Chem. Soc., 2008, 130: 5062.
[33] Lowe A B. Polym. Chem., 2010, 1: 17.
[34] Warren N J, Muise C, Stephens A, Armes S P, Lewis A L. Langmuir, 2012, 28: 2928.
[35] Zhang Q, Li G Z, Becer C R, Haddleton D M. Chem. Commun., 2012, 48: 8063.
[36] Bhairamadgi N S, Gangarapu S, Caipa Campos M A, Paulusse J M, van Rijn C J, Zuilhof H. Langmuir, 2013, 29(14): 4535.
[37] Wang K, Chen Y, Yang H, Li Y, Nie L, Yao S. Talanta, 2012, 91: 52.
[38] Chen Y, Wang K, Yang H, Liu Y, Yao S, Chen B, Nie L, Xu G. J. Chromatogr. A, 2012, 1233: 91.
[39] Dao T T H, Guerrouache M, Carbonnier B. Chin. J. Chem., 2012, 30: 2281.
[40] Guerrouache M, Mahouche-Chergui S, Chehimi M M, Carbonnier B. Chem. Commun., 2012, 48: 7486.
[41] Tijunelyte I, Babinot J, Guerrouache M, Valincius G, Carbonnier B. Polymer, 2012, 53: 29.
[42] Han H, Wang Q, Liu X, Jiang S. J. Chromatogr. A, 2012, 1246: 9.
[43] Lv Y, Lin Z, Svec F. Analyst, 2012, 137: 4114.
[44] Yang H, Chen Y, Liu Y, Nie L, Yao S. Electrophoresis, 2013, 34: 510.
[45] Liu Y, Chen Y, Yang H, Nie L, Yao S. J. Chromatogr. A, 2013, 1283: 132.
[46] Chen M L, Zhang J, Zhang Z, Yuan B F, Yu Q W, Feng Y Q. J. Chromatogr. A, 2013, 1284: 118.

[1] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[2] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[3] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[4] 秦苗, 徐梦洁, 黄棣, 魏延, 孟延锋, 陈维毅. 氧化铁纳米颗粒在磁共振成像中的应用[J]. 化学进展, 2020, 32(9): 1264-1273.
[5] 孙皓, 宋程威, 庞越鹏, 郑时有. 锂硫电池隔膜功能化设计[J]. 化学进展, 2020, 32(9): 1402-1411.
[6] 秦瑞轩, 邓果诚, 郑南峰. 金属纳米材料表面配体聚集效应[J]. 化学进展, 2020, 32(8): 1140-1157.
[7] 鲁志远, 刘燕妮, 廖世军. 锂离子电池富锂锰基层状正极材料的稳定性[J]. 化学进展, 2020, 32(10): 1504-1514.
[8] 王兆翔, 马君, 高玉瑞, 刘帅, 冯欣, 陈立泉. 稳定富锂层状氧化物正极材料的结构与性能[J]. 化学进展, 2019, 31(11): 1591-1614.
[9] 刘萍, 汪璟, 郝鸿业, 薛云帆, 黄俊杰, 计剑. 光化学反应在生物材料表面修饰中的应用[J]. 化学进展, 2019, 31(10): 1425-1439.
[10] 王亚立, 李贞, 刘志洪. 上转换荧光纳米材料的水溶性修饰[J]. 化学进展, 2016, 28(5): 617-627.
[11] 杨彩云, 曹长乾, 蔡垚, 张同伟, 潘永信. 铁蛋白表面修饰及其应用[J]. 化学进展, 2016, 28(1): 91-102.
[12] 牟思阳, 郭静, 于春芳, 宫玉梅, 张森. ATRP大分子引发剂的合成及应用[J]. 化学进展, 2015, 27(5): 539-549.
[13] 王诗琪, 付长奎, 危岩, 陶磊. 多组分聚合体系的探索[J]. 化学进展, 2014, 26(07): 1099-1106.
[14] 肖横洋, 第凤, 车剑飞, 肖迎红. 神经元电极的表面修饰及其功能化设计[J]. 化学进展, 2013, 25(11): 1962-1972.
[15] 熊兴泉*, 江云兵. 可逆Diels-Alder反应[J]. 化学进展, 2013, 25(06): 999-1011.