English
新闻公告
More
化学进展 2013, Vol. 25 Issue (12): 2119-2130 DOI: 10.7536/PC130542 前一篇   后一篇

所属专题: 酶化学

• 综述与评论 •

脱氧核酶在重金属离子检测中的应用

李慧, 孔德明*   

  1. 南开大学化学学院分析科学研究中心 天津 300071
  • 收稿日期:2013-05-01 修回日期:2013-08-01 出版日期:2013-12-15 发布日期:2013-09-17
  • 通讯作者: 孔德明 E-mail:Kongdem@nankai.edu.cn
  • 基金资助:

    天津市应用基础与前沿科技研究计划项目(No. 12JCYBJC13300)资助

Applications of DNAzymes in the Detection of Heavy Metal Ions

Li Hui, Kong Deming*   

  1. Research Centre for Analytical Sciences, Department of Chemistry, Nankai University, Tianjin 300071, China
  • Received:2013-05-01 Revised:2013-08-01 Online:2013-12-15 Published:2013-09-17

脱氧核酶(DNAzyme)是通过体外筛选技术(systematic evolution of ligands by exponential enrichment,SELEX技术)得到的具有酶活性的单链DNA片段。与天然酶相比,脱氧核酶具有性质稳定、合成和修饰简单以及易于储存等优势。某些脱氧核酶对金属离子显示了高度的识别特异性,且酶活性与特定金属离子的浓度密切相关。这些特点使其在金属离子检测中的应用备受关注。本文对脱氧核酶在重金属离子传感器设计中的应用进行了总结和评述,重点讨论了荧光传感器和比色传感器的设计。

DNAzymes, obtained by in vitro screening technique (systematic evolution of ligands by exponential enrichment, SELEX technique), are single-stranded DNAs with enzymatic activities. Compared to natural enzymes, DNAzymes are superior in terms of stability, ease of synthesis, modification and storage. As for some DNAzymes, they need specific metal ions as cofactors, and their enzymatic activities are highly dependent on the metal ion concentration. Their applications in metal ions detection have attracted more and more attention in these years. In this review, we summarized the researches on DNAzyme-based metal ion sensors. The focus is on the design of fluorescent sensors and colorimetric sensors.

Contents
1 Introduction
2 Pb2+ sensor
2.1 Pb2+ DNAzyme
2.2 DNAzyme-based fluorescent Pb2+ sensor
2.3 DNAzyme-based colorimetric Pb2+ sensor
3 Cu2+ sensor
3.1 Cu2+ DNAzyme
3.2 DNAzyme-based fluorescent Cu2+ sensor
3.3 DNAzyme-based colorimetric Cu2+ sensor
4 UO22+ sensor

4.1 DNAzyme-based fluorescent UO22+ sensor
4.2 DNAzyme-based colorimetric UO22+ sensor
5 Hg2+ sensor
5.1 DNAzyme-based fluorescent Hg2+ sensor
5.2 DNAzyme-based colorimetric Hg2+ sensor
6 Outlook

中图分类号: 

()

[1] Bannon D I, Murashchik C, Zapf C R, Farfel M R, Chisolm J J Jr. Clin. Chem., 1994, 40: 1730—1734
[2] Kumar B N, Ramana D K, Harinath Y, Seshaiah K, Wang M C. J. Agric. Food Chem., 2011, 59: 11352—11358
[3] Peng X J, Du J J, Fan J L, Wang J Y, Wu Y K, Zhao J Z, Sun S G, Xun T. J. Am. Chem. Soc., 2007, 129: 1500—1501
[4] Wegner S V, Okesli A, Chen P, He C A. J. Am. Chem. Soc., 2007, 129: 3474—3475
[5] Lee M H, Cho B K, Yoon J Y, Kim J S. Org. Lett., 2007, 9: 4515—4518
[6] Miyake Y, Togashi H, Tashiro M, Yamaguchi H, Oda S, Kudo M, Sawa R, Fujimoto T, Machinami T, Ono A. J. Am. Chem. Soc., 2006, 128: 2172—2173
[7] Vester B, Wengel J. Biochemistry, 2004, 43: 13233—13241
[8] Yang H, Zhou Z G, Huang K W, Yu M X, Li F Y, Yi T, Huang C H. Org. Lett., 2007, 9: 4729—4732
[9] Bonnet C S, Tóth E. Future Med. Chem., 2010, 2: 367—384
[10] Cech T R, Zaug A J, Graowski P J. Cell, 1981, 27: 487-496
[11] Breaker R R. Curr. Opin. Chem. Biol., 1997, l: 26—31
[12] Santoro S W, Joyce G F. Proc. Natl. Acad. Sci. U. S. A., 1997, 94: 4262—4266
[13] Schlosser K, Li Y F. ChemBioChem, 2010, 11: 866—879
[14] Palchetti I, Mascimi M. Analyst, 2008, 133: 846—854
[15] Chow C S, Bogdan F M. Chem. Rev., 1997, 97: 1489—1513
[16] Walt D R. Science, 2000, 287: 451—452
[17] Taylor L C, Walt D R. Anal. Biochem., 2000, 278: 132—142
[18] Zhu J B, Zhang L B, Li T, Dong S J, Wang E K. Adv. Mater., 2013, 25: 2440—2444
[19] Fu T, Zhao X H, Bai H R, Zhao Z L, Hu R, Kong R M, Zhang X B, Tan W H, Yu R Q. Chem. Commun., 2013, 49: 6644—6646
[20] Sun H J, Li X H, Li Y C, Fan L Z, Kraatz H B. Analyst, 2013, 138: 856—862
[21] Ye S J, Guo Y Y, Xiao J, Zhang S S. Chem. Commun., 2013, 49: 3643—3645
[22] Deng S Y, Cheng L X, Lei J P, Cheng Y, Huang Y, Ju H X. Nanoscale, 2013, 5: 5435—5441
[23] Kaneko N, Horii K, Kato S, Akitomi J, Waga I. Anal. Chem., 2013, 85: 5430—5435
[24] Liu X, Tang Y, Wang L. Adv. Mater., 2007, 19: 1471—1474
[25] Li J, Lu Y. J. Am. Chem. Soc., 2000, 122: 10466—10467
[26] Liu J W, Lu Y. Ana1. Chem., 2003, 75: 6666—6672
[27] Zhang X B, Wang Z D, Xing H, Xiang Y, Lu Y. Anal. Chem., 2010, 82: 5005—5011
[28] Li H, Zhang Q, Cai Y, Kong D M. Biosens. Bioelectron., 2012, 34: 159—164
[29] Liu J W, Lu Y. J. Am. Chem. Soc., 2003, 125: 6642—6643
[30] Liu J W, Lu Y. J. Am. Chem. Soc., 2004, 126: 12298—12305
[31] Liu J W, Lu Y. J. Am. Chem. Soc., 2005, 127: 12677—12683
[32] Liu J W, Lu Y. Org. Biomol. Chem., 2006, 4: 3435—3441
[33] Zhao W, Lam J C, Chiuman W, Brook M A, Li Y. Small, 2008, 4: 810—816
[34] Wei H, Li B L, Li J, Dong S J, Wang E K. Nanotechnology, 2008, 19: art. no. 115709
[35] Wang Z, Lee J H, Lu Y. Adv. Mater., 2008, 20: 3263—3267
[36] Vummidi B R, Alzeer J, Luedtke N W. ChemBioChem, 2013, 14: 540—558
[37] Rizzo A, Salvati E, Biroccio A. Methods, 2012, 57: 93—99
[38] Travascio P, Li Y, Sen D. Chem. Biol., 1998, 5: 505—517
[39] Travascio P, Bennet A J, Wang D Y, Sen D. Chem. Biol., 1999, 6: 779—787
[40] Elbaz J, Shlyahovsky B, Willner I. Chem. Commun., 2008, 1569—1571
[41] Zhang Q, Cai Y, Li H, Kong D M. Biosens. Bioelectron., 2012, 38: 331—336
[42] Carmi N, Breaker R R. Bioorg. Med. Chem., 2001, 9: 2589—2600
[43] Carmi N, Balkhi H R, Breaker R R. Proc. Natl. Acad. Sci. U. S. A., 1998, 95: 2233—2237
[44] Carmi N, Shultz L A, Breaker R R. Chem. Biol., 1996, 3: 1039—1046
[45] Liu J W, Lu Y. J. Am. Chem. Soc., 2007, 129: 9838—9839
[46] Li H, Huang X X, Kong D M, Shen H X, Liu Y. Biosens. Bioelectron., 2013, 42: 225—228
[47] Yin B C, Ye B C, Tan W H, Wang H, Xie C C. J. Am. Chem. Soc., 2009, 131: 14624—14625
[48] Liu J, Brown A K, Meng X, Cropek D M, Istok J D, Watson D B, Lu Y. Proc. Natl. Acad. Sci. U. S. A., 2007, 104: 2056—2061
[49] Wu P W, Hwang K, Lan T, Lu Y. J. Am. Chem. Soc., 2013, 135: 5254—5257
[50] Lee J H, Wang Z, Liu J W, Lu Y. J. Am. Chem. Soc., 2008, 130: 14217—14226
[51] Vannela R, Adriaens P. Environ. Eng. Sci., 2007, 24: 73—84
[52] Hollenstein M, Hipolito C, Lam C, Dietrich D, Perrin D M. Angew. Chem. Int. Ed., 2008, 47: 4346—4350
[53] Liu J, Lu Y. Angew. Chem. Int. Ed., 2007, 46: 7587—7590
[54] Santoro S W, Joyce G F, Barbas C F. J. Am. Chem. Soc., 2000, 122: 2433—2439
[55] Kim H, Liu J W, Lu Y. J. Am. Chem. Soc., 2007, 129: 6896—6902
[56] Shimron S, Elbaz J, Henning A, Willner I. Chem. Commun., 2010, 46: 3250—3252
[57] Mei S H J, Liu Z J, Brennan J D, Li Y F. J. Am. Chem. Soc., 2003, 125: 412—420
[58] Bruesehoff P J, Li J, Anfustine A J Ⅲ, Lu Y. Comb. Chem. High Throughput Screen., 2002, 5: 327—335
[59] Peracchi A J. J. Biol. Chem., 2000, 275: 11693—11697

[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[3] 赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, 宋伟杰. 基于人体呼气检测应用的气体传感器[J]. 化学进展, 2023, 35(2): 302-317.
[4] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[5] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[6] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[7] 卢继洋, 汪田田, 李湘湘, 邬福明, 杨辉, 胡文平. 电喷印刷柔性传感器[J]. 化学进展, 2022, 34(9): 1982-1995.
[8] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[9] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[10] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[11] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[12] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[13] 张锦辉, 张晋华, 梁继伟, 顾凯丽, 姚文婧, 李锦祥. 零价铁去除水中(类)金属(含氧)离子技术发展的黄金十年(2011-2021)[J]. 化学进展, 2022, 34(5): 1218-1228.
[14] 林瑜, 谭学才, 吴叶宇, 韦富存, 吴佳雯, 欧盼盼. 二维纳米材料g-C3N4在电化学发光中的应用研究[J]. 化学进展, 2022, 34(4): 898-908.
[15] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.