English
新闻公告
More
化学进展 2013, Vol. 25 Issue (12): 1999-2010 DOI: 10.7536/PC130531 前一篇   后一篇

• 综述与评论 •

Cr(Ⅵ)光催化还原

王亚军*, 姜丽娟, 冯长根   

  1. 北京理工大学 爆炸科学与技术国家重点实验室 北京 100081
  • 收稿日期:2013-05-01 修回日期:2013-08-01 出版日期:2013-12-15 发布日期:2013-09-17
  • 通讯作者: 王亚军 E-mail:yajunwang@bit.edu.cn
  • 基金资助:

    北京理工大学基础研究基金项目(No.20110242020)资助

Photocatalytic Reduction of Cr(Ⅵ)

Wang Yajun*, Jiang Lijuan, Feng Changgen   

  1. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
  • Received:2013-05-01 Revised:2013-08-01 Online:2013-12-15 Published:2013-09-17

Cr(Ⅵ)是水体和土壤中普遍存在的重金属污染物,其处理方法有物理法﹑化学法和生物法等。光催化还原法是一种较理想的处理含Cr(Ⅵ)废水的高级化学方法。本文根据国内外含Cr(Ⅵ)废水处理时常用光催化剂的类别,对光催化技术处理废水中Cr(Ⅵ)的研究进行综述,分析了各类光催化剂的特点、优点、局限性,光催化还原Cr(Ⅵ)的机理,以及光催化过程中的协同效应。通过讨论认为,寻找高催化活性的新型光催化剂、拓展光催化剂的光响应范围、有效设计Cr(Ⅵ)与其他污染物同时光催化除去的混合体系、将光催化还原法与其他方法偶合等是未来光催化还原Cr(Ⅵ)及其实际应用的发展趋势。

Cr(Ⅵ) is one of the most widespread heavy-metal pollutants mainly from electroplating, metallurgy, textile, printing and dyeing, leather, ceramics, pharmaceuticals and other industries, existing widely in water and soil. The popular treatment methods of Cr(Ⅵ) in wastewater are physical, chemical, biological methods and so on. Photocatalytic reduction, as an advanced chemical method, is an ideal method for treating Cr(Ⅵ) in wastewater. This paper is focused on the research progress of photocatalytic reduction of Cr(Ⅵ) in wastewater both at home and abroad. According to the type of the photocatalysts, the advantages and disadvantages of the photocatalysts are analyzed, and the possible photocatalytic mechanisms are presented. The synergistic effect by adding photo-induced hole scavenger, mainly organic matters, is important and effective for improving the photocatalytic efficiency of Cr(Ⅵ) and economic and practical in real wastewater application. The trends of photocatalytic reduction methods are also pointed out. The developing directions of the photocatalysis are seeking catalysts with higher catalytic activity, expanding the light responding range of photocatalysts and effectively designing combined system including Cr(Ⅵ) and other pollutants which can be removed by photocatalysis simultaneously. Besides, composite catalysts made of two or more materials, and photocatalytic reduction coupled with other methods are also the trends for treating Cr(Ⅵ) in the future.

Contents
1 Introduction
2 Photocatalytic reduction of Cr(Ⅵ) by TiO2
2.1 Pure TiO2 photocatalysis
2.2 Modified TiO2 photocatalysis
3 Photocatalytic reduction of Cr(Ⅵ) by other photocatalysts
4 Photocatalytic reduction of Cr(Ⅵ) by composite photocatalysts
5 Synergistic effect
6 Combination of photocatalytic technology and other methods
7 Conclusion and outlook

中图分类号: 

()

[1] 付宏祥(Fu H X), 吕功煊(Lü G X), 李新勇(Li X Y), 李树本(Li S B). 感光科学与光化学(Photogr. Sci. Photochem.), 1995, 13(4): 325—333
[2] 张小庆(Zhang X Q), 王文洲(Wang W Z), 王卫(Wang W). 环境科学与技术(Environ. Sci. Technol.), 2004, 13(S): 111—113
[3] Fujishima A, Honda K. Nature, 1972, 238(5338): 37—38
[4] Carey J H, Lawrence J, Tosine H M. Bull. Environ. Contam. Toxicol., 1976, 16(6): 697—701
[5] Frank S N, Bard A J. J. Phys. Chem., 1977, 81(15): 1484—1488
[6] Yoneyama H, Yamashita Y, Tamura H. Nature, 1979, 282: 817—818
[7] Bard A J. Science, 1980, 207(4427): 139—144
[8] Fox M A, Dulay M T. Chem. Rev., 1993, 93(1): 341—357
[9] Hoffmann M R, Martin S T, Choi W, Bahnemann D W. Chem. Rev., 1995, 95(1): 69—96
[10] Mills A, Hunte S L. J. Photochem. Photobiol. A: Chem., 1997, 108: 1—35
[11] Alfano O M, Bahnemann D, Cassano A E, Dillert R, Goslich R. Catal. Today, 2000, 58: 199—230
[12] Henderson M A. Surf. Sci. Rep., 2011, 66(6/7): 185—297
[13] Wang Q, Shang J, Zhu T, Zhao F W. J. Mol. Catal. A: Chem., 2011, 335(1/2): 242—247
[14] Litter M I. Appl. Catal. B: Environ., 1999, 23(2/3): 89—114
[15] Navío J A, Colón G, Trillas M, Peral J, Domènech X, Testa J J, Padrón J, Rodríguez D, Litter M I. Appl. Catal. B: Environ., 1998, 16(2): 187—196
[16] Navio J A, Testa J J, Djedjeian P, Padron J R, Rodriguez D, Litter M I. Appl. Catal. A: Gen., 1999, 178(2): 191—203
[17] Kajitvichyanukul P, Ananpattarachai J, Pongpom S. Sci. Technol. Adv. Mater., 2005, 6(3/4): 352—358
[18] 张青红(Zhang Q H), 高濂(Gao L), 郭景坤(Guo J K). 高等学校化学学报(Chem. J. Chin. Univ.), 2000, 21(10): 1547—1551
[19] Jiang F, Zheng Z, Xu Z, Zheng S, Guo Z, Chen L. J. Hazard. Mater., 2006, B134: 94—103
[20] 张青红(Zhang Q H), 高濂(Gao L), 郑珊(Zheng S). 化学学报(Acta Chim. Sinica), 2001, 59(11): 1908—1913
[21] Cappelletti G, Bianchi C L, Ardizzone S. Appl. Catal. B: Environ., 2008, 78: 193—201
[22] Saekia K, Kadonoa M, Nabeshimaa A. J. Environ. Sci. Health Part A, 2010, 45: 275—281
[23] Long Y, Lu Y, Lu Y, Kang S Z, Mu J. J. Dispersion Sci. Technol., 2011, 32: 213—216
[24] 陈孝云(Chen X Y), 刘守新(Liu S X), 陈曦(Chen X), 孙承林(Sun C L). 物理化学学报(Acta Phys. Chim. Sin.), 2006, 22(5): 517—522
[25] Yoon J, Shim E, Joo H. Korean J. Chem. Eng., 2009, 26(5): 1296—1300
[26] Iwata T, Ishikawa M, Ichino R, Okido M. Surf. Coat. Technol., 2003, 169/170: 703—706
[27] Park M, Heo A, Shim E, Yoon J, Kim H, Joo H. J. Power Sources, 2010, 195: 5144—5149
[28] Yoon J, Shim E, Bae S, Joo H. J. Hazard. Mater., 2009, 161: 1069—1074
[29] Pifferi V, Spadavecchia F, Cappelletti G, Paoli E A, Bianchi C L, Falciola L. Catal. Today, 2013, 209: 8—12
[30] Mu R, Xu Z, Li L, Shao Y, Wan H, Zheng S. J. Hazard. Mater., 2010, 176: 495—502
[31] 刘守新(Liu S X), 孙承林(Sun C L). 物理化学学报(Acta Phys. Chim. Sin.), 2004, 20(4): 355—359
[32] Guo J F, Ma B, Yin A, Fan K, Dai W L. J. Hazard. Mater., 2012, 211/212: 77—82
[33] Fan J W, Liu X H, Zhang J. Environ. Technol., 2011, 32(4): 427—437
[34] Luo S L, Xiao Y, Yang L X, Liu C B, Su F, Li Y, Cai Q Y. Separation Purif. Technol., 2011, 79(1): 85—91
[35] Chen H, Shao Y, Xu Z, Wan H, Wan Y, Zheng S, Zhu D. Appl. Catal. B: Environ., 2011, 105: 255—262
[36] Mu S, Long Y, Kang S, Mu J. Catal. Commun., 2010, 11: 741—744
[37] Liu H, Zhou Y, Huang H, Feng Y. Desalination, 2011, 278(1/3): 434—437
[38] Cheng S T, Chenthamarakshan C R, de Tacconi N R, Rajeshwar K. Res. Chem. Intermed., 2007, 33(3/5): 225—237
[39] Ileperuma O A, Tennakone K, Dissanayake W D D P. Appl. Catal., 1990, 62(1): L1—L5
[40] Parida K M, Sahu N. J. Mol. Catal. A: Chem., 2008, 287(1/2): 151—158
[41] Rengaraj S, Venkataraj S, Yeon J W. Appl. Catal. B: Environ., 2007, 77(1/2): 157—165
[42] Siemon U, Bahnemann D, Testa J J, Rodriguez D, Litter M I, Bruno N. J. Photochem. Photobiol. A: Chem., 2002, 148(1/3): 247—255
[43] 黄涛(Huang T), 张国亮(Zhang G L), 王玲(Wang L), 刘良军(Liu L J), 孙茜萍(Sun X P). 催化学报(Chin. J. Catal.), 2011, 32(3): 508—512
[44] Giannakas A E, Seristatidou E, Deligiannakis Y, Konstantinou I. Appl. Catal. B: Environ., 2013, 132/133: 460—468
[45] Shi F, Wang W, Huang W. Chin. J. Chem. Phys., 2012, 25(2): 214—218
[46] 江芳(Jiang F), 郑寿荣(Zheng S R), 郑正(Zheng Z), 郭照冰(Guo Z B), 袁守军(Yuan S J), 帖靖玺(Tie J X), 陈立强(Chen L Q). 环境化学(Environ. Chem.), 2005, 24(4): 389—393
[47] 张青红(Zhang Q H), 高濂(Gao L). 化学学报(Acta Chim. Sinica), 2005, 63(1): 65—70
[48] Shao D, Wang X, Fan Q. Microporous Mesoporous Mater., 2009, 117(1/2): 243—248
[49] Khalil L B, Mourad W E, Rophael M W. Appl. Catal. B: Environ., 1998, 17(3): 267—273
[50] Doménech J, Muñoz J. Electrochim. Acta, 1987, 32(9): 1383—1386
[51] Chakrabarti S, Chaudhuri B, Bhattacharjee S, Ray A K, Dutta B K. Chem. Eng. J., 2009, 153: 86—93
[52] Yang G C C, Chan S W. J. Nanopart. Res., 2009, 11: 221—230
[53] Doménech J, Muñoz J. J. Chem. Res. Synopses, 1987, 4: 106—107
[54] Wang S, Wang Z, Zhuang Q. Appl. Catal. B: Environ., 1992, 1(4): 257—270
[55] Malati M A, Attubato L, Beaney K. Sol. Energy Sol. Cells, 1996, 40(1): 1—4
[56] 刘俊渤(Liu J B), 吴景贵(Wu J G), 刘景华(Liu J H). 吉林农业大学学报(J. Jilin Agric. Univ.), 2005, 27(1): 83—85, 91
[57] Mekatel H, Amokrane S, Bellal B, Trari M, Nibou D. Chem. Eng. J., 2012, 200/202: 611—618
[58] Yang W, Zhang L, Hu Y, Zhong Y, Wu H B, Lou X W. Angew. Chem., 2012, 124: 11669—11672
[59] Liu X, Bai H. Powder Technol., 2013, 237: 610—615
[60] Hernández-Gordillo A, Tzompantzi F, Gómez R. Catal. Commun., 2012, 19: 51—55
[61] Idris A, Misran E, Yusof N M. J. Ind. Eng. Chem., 2012, 18(6): 2151—2156
[62] Qamar M, Gondal M A, Yamani Z H. J. Mol. Catal. A: Chem., 2011, 341(1/2): 83—88
[63] 刘自力(Liu Z L), 刘宏伟(Liu H W), 李茹(Li R). 高校化学工程学报(J. Chem. Eng. Chin. Univ.), 2007, 21(1): 88—92
[64] Botta S G, Navio J A, Hidalgo M C, Restrepo G M, Litter M I. J. Photochem. Photobiol. A: Chem., 1999, 129(1/2): 89—99
[65] Huang H, Feng Y, Zhou J, Li G, Dai K. Desalin. Water Treat., 2013, DOI: 10.1080/19443994.2013.779598
[66] Yang Q, Kang S, Chen H, Bu W, Mu J. Desalination, 2011, 266(1/3): 149—153
[67] Wang T X, Xu S H, Yang F X. Mater. Lett., 2012, 83: 46—48
[68] Wang L, Li X, Teng W, Zhao Q, Shi Y, Yue R, Chen Y. J. Hazard. Mater., 2013, 244/245: 681—688
[69] Torres-Martínez L M, Moctezuma E, Ruiz-Gómez M A, Juárez-Ramírez I, Figueroa-Torres M Z. Res. Chem. Intermed., 2013, 39: 1533—1544
[70] Chen G, Sun M, Wei Q, Ma Z, Du B. Appl. Catal. B: Environ., 2012, 125: 282—287
[71] Xie B P, Zhang H X, Cai P X, Qiu R L, Xiong Y. Chemosphere, 2006, 63(6): 956—963
[72] 刘俊渤(Liu J B), 王明辉(Wang M H), 吴景贵(Wu J G), 奚士锋(Xi S F). 吉林农业大学学报(J. Jilin Agric. Univ.), 2006, 28(5): 556—559
[73] Idris A, Hassan N, Rashid R, Ngomsik A F. J. Hazard. Mater., 2011, 186(1): 629—635
[74] Wu W, Wang S, Tzou Y, Chen J, Wang M. Appl. Catal. B: Environ., 2007, 75(3/4): 272—280
[75] 雷雪飞(Lei X F), 薛向欣(Xue X X). 化工学报(J. Chem. Ind. Eng.), 2008, 59(9): 2247—2254
[76] Li Y, Lu A, Wang C. Acta Geol. Sin., 2006, 80(2): 267—272
[77] Idris A, Misran E, Hassan N, Jalil A A, Seng C E. J. Hazard. Mater., 2012, 227/228: 309—316
[78] 程年寿(Cheng N S), 陈君华(Chen J H), 陈俊明(Chen J M), 张平(Zhang P). 材料导报(Mater. Rev.), 2010, 24(S2): 47—50
[79] Gkika E, Troupis A, Papaconstantinou A H E. Appl. Catal. B: Environ., 2006, 62(1/2): 28—34
[80] 刘延湘(Liu Y X), 张旭(Zhang X), 张长波(Zhang C B), 吴峰(Wu F), 邓南圣(Deng N S). 环境化学(Environ. Chem.), 2008, 27(1): 11—14
[81] Ku Y, Huang Y H, Chou Y C. J. Mol. Catal. A: Chem., 2011, 342/343: 18—22
[82] Hidalgo M C, Colón G, Navio J A, Macias M, Kriventsov V V, Kochubey D I, Tsodikov M V. Catal. Today, 2007, 128(3/4): 245—250
[83] Colón G, Hidalgo M C, Navío J A. Appl. Catal. A: Gen., 2002, 231: 185—199
[84] Yang L, Xiao Y, Liu S, Li Y, Cai Q, Luo S, Zeng G. Appl. Catal. B: Environ., 2010, 94(1/2): 142—149
[85] Zhang J, Yang Y, Liu W. Int. J. Photoenergy, 2012, 2012: 1—9
[86] Zhang Y C, Li J, Xu H Y. Appl. Catal. B: Environ., 2012, 123/124: 18—26
[87] Li J, Wang T, Du X. Separation Purif. Technol., 2012, 101: 11—17
[88] Wang J, Li X, Li X, Zhu J, Li H. Nanoscale, 2013, 5(5): 1876—1881
[89] Wei S, Chen Y, Ma Y, Shao Z. J. Mol. Catal. A: Chem., 2010, 331(1/2): 112—116
[90] Yang W, Liu Y, Hu Y, Zhou M, Qian H. J. Mater. Chem., 2012, 22(28): 13895—13898
[91] Lahmar H, Kebir M, Nasrallah N, Trari M. J. Mol. Catal. A: Chem., 2012, 353/354: 74—79
[92] Ketir W, Rekhila G, Trari M, Amrane A. J. Environ. Sci., 2012, 24(12): 2173—2179
[93] Gherbi R, Nasrallah N, Amrane A, Maachi R, Trari M. J. Hazard. Mater., 2011, 186(3): 1124—1130
[94] Zheng S, Xu Z, Wang Y, Wei Z, Wang B. J. Photochem. Photobiol. A: Chem., 2000, 137: 185—189
[95] Jiang G, Lin Z, Chen C, Zhu L, Chang Q, Wang N, Wei W, Tang H. Carbon, 2011, 49(8): 2693—2701
[96] Zhang K, Kemp K C, Chandra V. Mater. Lett., 2012, 81: 127—130
[97] Zhang N, Yang M Q, Tang Z R, Xu Y J. J. Catal., 2013, 303: 60—69
[98] An X, Yu J C, Wang F, Li C, Li Y. Appl. Catal. B: Environ., 2013, 129: 80—88
[99] Liu X, Pan L, Zhao Q, Lv T, Zhu G, Chen T, Lu T, Sun Z, Sun C. Chem. Eng. J., 2012, 183: 238—243
[100] Ma H, Shen J, Shi M, Lu X, Li Z, Long Y, Li N, Ye M. Appl. Catal. B: Environ., 2012, 121/122: 198—205
[101] 魏守强(Wei S Q), 陈玉叶(Chen Y Y), 马玉燕(Ma Y Y), 卢旭东(Lu X D), 邵忠财(Shao Z C). 硅酸盐学报(J. Chin. Ceram. Soc.), 2010, 38(10): 1991—1995
[102] Xu Z, Long Y, Kang S, Mu J. J. Disper. Sci. Technol., 2008, 29: 1150—1152
[103] Liu X, Pan L, Lv T, Sun Z, Sun C. J. Mol. Catal. A: Chem., 2012, 363/364: 417—422
[104] Tzou Y M, Wang S L, Wang M K. Colloids Surf. A: Physicochem. Eng. Aspects, 2005, 253: 15—22
[105] Huang L, Chan Q, Wu X, Wang H, Liu Y. J. Ind. Eng. Chem., 2012, 18(1): 574—580
[106] Prairie M R, Evans L R, Stange B M, Martinez S L. Environ. Sci. Technol., 1993, 27: 1776—1782
[107] 傅宏祥(Fu H X), 吕功煊(Lü G X), 李树本(Li S B). 物理化学学报(Acta Phys. Chim. Sin.), 1997, 13(2): 106—112
[108] Lee S M, Cho I H, Chang Y Y, Yang J K. J. Environ. Sci. Health Part A, 2007, 42(4): 543—548
[109] Vinu R, Madras G. Environ. Sci. Technol., 2008, 42: 913—919
[110] Testa J J, Grela M A, Litter M I. Environ. Sci. Technol., 2004, 38: 1589—1594
[111] Colón G, Hidalgo M C, Navío J A. J. Photochem. Photobiol. A: Chem., 2001, 138: 79—85
[112] Wang N, Xu Y, Zhu L, Shen X, Tang H. J. Photochem. Photobiol. A: Chem., 2009, 201: 121—127
[113] Colón G, Hidalgo M C, Navío J A. Langmuir, 2001, 17: 7174—7177
[114] Deng B, Stone A T. Environ. Sci. Technol., 1996, 30: 463—472
[115] Yang J K, Lee S M. Chemosphere, 2006, 63: 1677—1684
[116] Wang L, Wang N, Zhu L, Yu H, Tang H. J. Hazard. Mater., 2008, 152: 93—99
[117] Lee S M, Lee T W, Choi B J, Yang J K. J. Environ. Sci. Health Part A, 2003, 38(10): 2219—2228
[118] 王后锦(Wang H J), 吴晓婧(Wu X J), 王亚玲(Wang Y L), 焦自斌(Jiao Z B), 颜声威(Yan S W), 黄浪欢(Huang L H). 催化学报(Chin. J. Catal.), 2011, 32(4): 637—642
[119] Qiu R, Zhang D, Diao Z, Huang X, He C, Morel J L, Xiong Y. Water Res., 2012, 46(7): 2299—2306
[120] 付宏祥(Fu H X), 吕功煊(Lü G X), 杨瑞琴(Yang R Q), 李树本(Li S B). 分子催化(J. Mol. Catal. (China)), 2000, 14(3): 214—218
[121] Fu H, Lu G, Li S. J. Photochem. Photobiol. A: Chem., 1998, 114: 8l—88
[122] Sun B, Reddy E P, Smirniotis P G. Environ. Sci. Technol., 2005, 39: 6251—6259
[123] Yang J, Dai J, Li J. Environ. Sci. Pollut. Res., 2013, 20: 2435—2447
[124] 封享华(Feng X H), 丁世敏(Ding S M), 吴峰(Wu F), 邓南圣(Deng N S), Bazhin N. 环境科学研究(Res. Environ. Sci.), 2005, 18(4): 75—78
[125] 雷雪飞(Lei X F), 薛向欣(Xue X X). 东北大学学报: 自然科学版(J. Northeast. Univ. Nat. Sci.), 2011, 32(8): 1133—1136
[126] 姜丽娟(Jiang L J), 王亚军(Wang Y J), 冯长根(Feng C G). 安全与环境学报(J. Saf. Environ.), 2012, 12(4): 109—113
[127] Wang Y, Jiang L, Feng C. Desalin. Water Treat., 2013, DOI: 10.1080/19443994.2013.804449
[128] Dozzi M V, Saccomanni A, Selli E. J. Hazard. Mater., 2012, 211/212: 188—195
[129] Papadam T, Xekoukoulotakis N P, Poulios I, Mantzavinos D. J. Photochem. Photobiol. A: Chem., 2007, 186(2/3): 308—315
[130] 刘鼎(Liu D), 许宜铭(Xu Y M). 物理化学学报(Acta Phys. Chim. Sin.), 2008, 24(9): 1584—1588
[131] Yu H, Chen S, Quan X, Zhao H, Zhang Y. Environ. Sci. Technol., 2008, 42: 3791—3796
[132] 陈士夫(Chen S F), 曹更玉(Cao G Y). 感光科学与光化学(Photogr. Sci. Photochem.), 2002, 20(6): 435—440
[133] 陈心满(Chen X M), 徐明芳(Xu M F). 环境科学(Environ. Sci.), 2006, 27(5): 913—917
[134] 汤心虎(Tang X H), 韦朝海(Wei C H), 龙保根(Long B G), 刘超(Liu C). 环境化学(Environ. Chem.), 2006, 25(1): 20—23
[135] 艾仕云(Ai S Y), 李嘉庆(Li J Q), 杨娅(Yang Y), 潘振声(Pan Z S), 金利通(Jin L T). 分子催化(J. Mol. Catal. (China)), 2007, 17(1): 29—33
[136] 雷雪飞(Lei X F), 薛向欣(Xue X X). 化学学报(Acta Chim. Sinica), 2008, 66(22): 2539—2546
[137] Meichtry J M, Brusa M, Mailhot G, Grela M A, Litter M I. Appl. Catal. B: Environ., 2007, 71: 101—107
[138] Antonopoulou M, Giannakas A, Konstantinou I. Int. J. Photoenergy, 2012, 2012: 1—10
[139] 郭琳(Guo L), 杨建文(Yang J W). 稀有金属(Chin. J. Rare Met.), 2005, 29(3): 261—264
[140] Jiang D, Li Y, Wu Y, Zhou P, Lan Y, Zhou L. Chemosphere, 2012, 89(7): 832—837
[141] Goeringer S, Chenthamarakshan C R, Rajeshwar K. Electrochem. Commun., 2001, 3: 290—292
[142] Wang X, Pehkonen S O, Ray A K. Ind. Eng. Chem. Res., 2004, 43: 1665—1672
[143] 付宏祥(Fu H X), 吕功煊(Lü G X), 张宏(Zhang H), 李树本(Li S B). 环境科学(Environ. Sci.), 1998, 19(3): 80—83
[144] 任学昌(Ren X C), 刘宏飞(Liu H F), 张翠玲(Zhang C L), 陈涛(Chen T), 张国珍(Zhang G Z), 武福平(Wu F P), 孙三样(Sun S Y). 环境工程学报(Chin. J. Environ. Eng.), 2010, 4(2): 288—292
[145] 任学昌(Ren X C), 张国珍(Zhang G Z), 朱亚敏(Zhu Y M), 刘宏飞(Liu H F), 曹敏(Cao M). 环境化学(Environ. Chem.), 2009, 28(6): 829—832
[146] Kebir M, Chabani M, Nasrallah N, Bensmaili A, Trari M. Desalination, 2011, 270(1/3): 166—173
[147] 黄毅(Huang Y), 薛晚侠(Xue W X), 汪池金(Wang C J), 王书敏(Wang S M). 工业安全与环保(Ind. Saf. Environ. Prot.), 2008, 34(5): 22—24

[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[3] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[4] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[5] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[6] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[7] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[8] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[9] 张德善, 佟振合, 吴骊珠. 人工光合作用[J]. 化学进展, 2022, 34(7): 1590-1599.
[10] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[11] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[12] 张双玉, 胡韵璇, 李成, 徐新华. 微生物铁氧化还原作用对水中砷锑去除影响的研究进展[J]. 化学进展, 2022, 34(4): 870-883.
[13] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[14] 于丰收, 湛佳宇, 张鲁华. p区金属基电催化还原二氧化碳制甲酸催化剂研究进展[J]. 化学进展, 2022, 34(4): 983-991.
[15] 尹晓庆, 陈玮豪, 邓博苑, 张佳路, 刘婉琪, 彭开铭. 超润湿膜在乳化液破乳中的应用及作用机制[J]. 化学进展, 2022, 34(3): 580-592.
阅读次数
全文


摘要

Cr(Ⅵ)光催化还原