English
新闻公告
More
化学进展 2014, Vol. 26 Issue (01): 125-139 DOI: 10.7536/PC130525 前一篇   后一篇

• 综述与评论 •

基于脲基氢键组装的功能超分子凝胶

王赛1,2, 吴斌1, 段军飞1, 方江邻*2, 谌东中*1   

  1. 1. 南京大学化学化工学院高分子科学与工程系 介观化学教育部重点实验室 南京 210093;
    2. 南京大学现代分析中心 南京 210093
  • 收稿日期:2013-05-01 修回日期:2013-09-01 出版日期:2014-01-15 发布日期:2013-11-08
  • 通讯作者: 方江邻,e-mail:fangjl@nju.edu.cn;谌东中,e-mail:cdz@nju.edu.cn E-mail:fangjl@nju.edu.cn;cdz@nju.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.20874044)和江苏省基础研究计划项目(No.BK2010244)资助

Functional Supramolecular Gels Self-Assembled by Hydrogen Bonding Among Urea-Based Gelators

Wang Sai1,2, Wu Bin1, Duan Junfei1, Fang Jianglin*2, Chen Dongzhong*1   

  1. 1. Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China;
    2. Center for Materials Analysis, Nanjing University, Nanjing 210093, China
  • Received:2013-05-01 Revised:2013-09-01 Online:2014-01-15 Published:2013-11-08
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 20874044) and Fundamental Research Plan Project of Jiangsu Province (No. BK2010244)

有机小分子化合物在分子间氢键、π-π堆积、亲疏水作用、范德华力等非共价键弱相互作用力驱动下,自组装形成三维网络结构的物理凝胶称为超分子凝胶。含有脲基的凝胶因子由于其强氢键缔合能力以及与阴离子、金属离子、卤素化合物等作用的可调变多样性,成为组装超分子凝胶中特别有效的氢键组装单元。本文分别从单脲基、双脲基和多脲基的凝胶因子分类综述了基于脲基氢键组装的功能超分子凝胶的研究工作,特别是近几年来的重要进展。对一些成功例子,从分子设计及成胶操作条件控制等方面的精细调谐如何解决聚集-溶解这对主要矛盾,从而实现溶胶-凝胶的转化及其可能的应用前景进行了评述。本文展望了该领域的发展方向与趋势,指出超分子凝胶研究经过多年的快速发展,深化对其蕴含机制以及动力学过程的认识与调控以实现具有多种刺激响应、多重信号输出的多组分复合功能凝胶体系的加工制备是发展趋势与必然要求,展现出广泛的应用前景也极富挑战性。

Supramolecular gels with various ordered structures are constructed by the self-assembly of low-molecular-weight gelators (LMWGs) in some solvents driven by non-covalent interactions such as hydrogen bonding, π-π interactions, hydrophobic effects, and van der Waals interactions. Urea derivatives are among the most effective gelators for self-assembling supramolecular gels due to their strong hydrogen-bonding capability and various interactions and responsiveness to anion, metal cation and halide. In this paper, some representative research works especially the recent progress on functional supramolecular gels constructed from urea-based gelators are reviewed according to mono-, bis-and multi-urea systems. Furthermore, brief comments are made on their reversible sol-gel transformation and possible applications for some typical cases from the viewpoint of finely tuning the dissolution-aggregation balance mainly based on molecular design of gelators and the optimization of their gelation conditions. Finally,the research trends and application perspectives of supramolecular gels are concisely expected and point out that after many years rapid development in this field, the clear understanding of gelation kinetics and the mechanism involved are the imperative and challenging work, and multi-component supramolecular gels with complex internal structures and controllable physical properties showing fast response to variant external stimuli may constitute the new generation of functional gels.

Contents
1 Introduction to supramolecular gels
2 Mono-urea functional supramolecular gels
3 Bis-urea functional supramolecular gels
3.1 Bis-urea gels with aliphatic spacer
3.2 Bis-urea gels with aromatic spacer
4 Multi-urea functional supramolecular gels
5 Conclusions and outlook

中图分类号: 

()

[1] Flory P J. Faraday Discuss, 1974, 57: 7.
[2] Terech P, Weiss R G. Chem. Rev., 1997, 97: 3133.
[3] Abdallah D J, Weiss R G. Adv. Mater., 2000, 12: 1237.
[4] Fages F, Vögtle F, ?ini D? M. Top. Curr. Chem., 2005, 256: 77.
[5] Estroff L A, Hamilton A D. Chem. Rev., 2004, 104: 1201.
[6] Sangeetha N M, Maitra U. Chem. Soc. Rev., 2005, 34: 821.
[7] George M, Weiss R G. Acc. Chem. Res., 2006, 39: 489.
[8] Dastidar P. Chem. Soc. Rev., 2008, 37: 2699.
[9] Smith D K. Chem. Soc. Rev., 2009, 38: 684.
[10] Piepenbrock M M, Lloyd G O, Clarke N, Steed J W. Chem. Rev., 2010, 110: 1960.
[11] Buerkle L E, Rowan S. J. Chem. Soc. Rev., 2012, 41: 6089.
[12] Tomasini C, Castellucci N. Chem. Soc. Rev., 2013, 42: 156.
[13] Hirst A R, Escuder B, Miravet J F, Smith D K. Angew. Chem. Int. Ed., 2008, 47: 8002.
[14] Wang X, Horri A, Zhang S. Soft Matter, 2008, 4: 2388.
[15] Stupp S I. Nano Lett., 2010, 10: 4783.
[16] Silva G A, Czeisler C, Niece K L, Beniash E, Harrington D A, Kessler J A, Stupp S I. Science, 2004, 303: 1352.
[17] Yagai S, Nakajima T, Kishikawa K, Kohmoto S, Karatsu T, Kitamura A. J. Am. Chem. Soc., 2005, 127: 11134.
[18] de Jong J J D, Lucas L N, Kellogg R M, van Esch J H, Feringa B L. Science, 2004, 304: 278.
[19] Mukhopadhyay P, Iwashita Y, Shirakawa M, Kawano S, Fujita N, Shinkai S. Angew. Chem. Int. Ed., 2006, 45: 1592.
[20] Kato T, Yasuda T, Kamikawa Y, Yoshio M. Chem. Commun., 2009: 729.
[21] Kato T, Hirai Y, Nakaso S, Moriyama M, Chem. Soc. Rev., 2007, 36: 1857.
[22] Yagai S, Kubota S, Iwashima T, Kishikawa K, Nakanishi T, Karatsu T, Kitamura A. Chem. Eur. J., 2008, 14: 5246.
[23] Kitamura T, Nakaso S, Mizoshita N, Tochigi Y, Shimomura T, Moriyama M, Ito K, Kato T. J. Am. Chem. Soc., 2005, 127: 14769.
[24] Segarra-Maset M D, Nebot V J, Miravet J F, Escuder B. Chem. Sov. Rev., 2013, 42: 7086.
[25] Yang X Y, Zhang G X, Zhang D Q. J. Mater. Chem., 2012, 22: 38.
[26] 孔丽(Kong L), 孙涛(Sun T), 张峰(Zhang F), 辛飞飞(Xin F F), 郝爱友(Hao A Y). 化学进展(Progress in Chemistry), 2012, 24(5): 790.
[27] 王毓江(Wang Y J), 唐黎明(Tang L M), 于建(Yu J). 化学进展(Progress in Chemistry), 2009, 21(6): 1312.
[28] 周义锋(Zhou Y F). 化学进展(Progress in Chemistry), 2011, 23(1): 125.
[29] 沈利英(Shen L Y), 陈肖卓(Chen X Z), 于海涛(Yu H T), 梁刚(Liang G). 有机化学(Chinese Journal of Organic Chemistry), 2009, 29(3): 321.
[30] Steed J W. Chem. Sov. Rev., 2010, 39: 3686.
[31] Lloyd G O, Steed J W. Nature Chem., 2009, 1: 437.
[32] Foster J A, Piepenbrock M M, Lloyd G O, Clarke N, Howard J A K, Steed J W. Nature Chem., 2010, 2: 1037.
[33] George M, Tan G, John V T, Weiss R G. Chem. Eur. J., 2005, 11: 3243.
[34] Rodrguez-Llansola F, Escuder B, Miravet J F, Hermida-Merino D, Hamley I W, Cardin C J, Hayes W. Chem. Commun., 2010, 46: 7960.
[35] Ghosh K, Kar D. Org. Biomol. Chem., 2012, 10: 8800.
[36] Wang G, Hamilton A D. Chem. Commun., 2003: 310.
[37] Patra T, Pal A, Dey J. J. Colloid Interface Sci., 2010, 344: 10.
[38] Pal A, Dey J. Langmuir, 2011, 27: 3401.
[39] Pal A, Dey J. Langmuir, 2013, 29: 2120.
[40] Wang C, Zhang D Q, Xiang J F, Zhu D B. Langmuir, 2007, 23: 9195.
[41] Hwang I, Jeon W S, Kim H J, Kim D, Kim H, Selvapalam N, Fujita N, Shinkai S, Kim K. Angew. Chem. Int. Ed., 2007, 46: 210.
[42] Tsuge A, Matsushita R, Sakura K, Moriguchi T, Araki K. Chem. Lett., 2012, 41: 485.
[43] Mutoh K, Abe J. Chem. Commun., 2011, 47: 8868.
[44] Hsueh S Y, Kuo C T, Lu T W, Lai C C, Liu Y H, Hsu H F, Peng S M, Chen C H, Chiu S H. Angew. Chem. Int. Ed., 2010, 49: 9170.
[45] Kida T, Marui Y, Miyawaki K, Kato T, Akashi M. Chem. Commun., 2009, 3889.
[46] Jung J H, Kobayashi H, Masuda M, Shimizu T, Shinkai S. J. Am. Chem. Soc., 2001, 123: 8785.
[47] van der L S, Feringa B L, Kellogg R M, van Esch. J H. Langmuir, 2002, 18: 7136.
[48] Adarsh N N, Kumar D K, Dastidar P. Tetrahedron, 2007, 63: 7386.
[49] Arai S, Imazu K, Kusuda S, Yoshihama I, Tonegawa M, Nishimura Y, Kitahara K, Oishi S, Takemura T. Chem. Lett., 2006, 35: 634.
[50] Braga D, d'Agostino S, D'Amen E, Grepioni F. Chem. Commun., 2011, 47: 5154.
[51] van Esch J, Feyter S D, Kellogg R M, Schryver F D, Feringa B L S. Chem. Eur. J., 1997, 3: 1238.
[52] van Esch J, Kellogg R M, Feringa B L. Tetrahedron Lett., 1997, 38: 281.
[53] Piepenbrock M O M, Lloyd G O, Clarke N, Steed J W. Chem. Commun., 2008, 2644.
[54] Lloyd G O, Piepenbrock M O M, Foster J A, Clarke N, Steed J W. Soft Matter, 2012, 8: 204.
[55] Yagai S, Kubota S, Iwashima T, Kishikawa K, Nakanishi T, Karatsu T, Kitamura A. Chem. Eur. J., 2008, 14: 5246.
[56] Coates I A, Smith D K. Chem. Eur. J., 2009, 15: 6340.
[57] Edwards W, Lagadec C A, Smith D K. Soft Matter, 2011, 7: 110.
[58] Hardy J G, Hirst A R, Ashworth I, Brennan C, Smith D K. Tetrahedron, 2007, 63: 7397.
[59] Rubio J, Martí-Centelles V, Burguete M I, Luis S V. Tetrahedron, 2013, 69: 2302.
[60] van Esch J, Schoonbeek F, de Loos M, Kooijman H, Spek A L, Kellogg R M, Feringa B L. Chem. Eur. J., 1999, 5: 937.
[61] de Loos M, van Esch J, Stokroos I, Kellogg R M, Feringa B L. J. Am. Chem. Soc., 1997, 119: 12675.
[62] Brinksma J, Feringa B L, Kellogg R M, Vreeker R, van Esch J. Langmuir, 2000, 16: 9249.
[63] de Loos M, van Esch J, Kellogg R M, Feringa B L. Angew. Chem. Int. Ed., 2001, 40: 613.
[64] Carr A J, Melendez R, Geib S J, Hamilton A D. Tetrahedron Lett., 1998, 39: 7447.
[65] Yabuuchi K, Emmanuel M O, Kato T. Org. Biomol. Chem., 2003, 1: 3464.
[66] Yang H, Yi T, Zhou Z G, Zhou Y F, Wu J, Xu M, Li F Y, Huang C H. Langmuir, 2007, 23: 8224.
[67] Zhang C, Wang J, Wang J J, Li M, Yang X L, Xu H B. Chem. Eur. J., 2012, 18: 14954.
[68] Qi Z, de Molina P M, Jiang W, Wang Q, Nowosinski K, Schulz A, Gradzielski M, Schalley C A. Chem. Sci., 2012, 3: 2073.
[69] Das A, Ghosh S. Chem. Eur. J., 2010, 16: 13622.
[70] Schoonbeek F S, van Esch J H, Wegewijs B. Angew. Chem. Int. Ed., 1999, 38: 1393.
[71] Akazawa M, Uchida K, de Jong J J D, Areephong J, Stuart M, Caroli G, Browne W R, Feringa B L. Org. Biomol. Chem., 2008, 6: 1544.
[72] Miravet J F, Escuder B. Org. Lett., 2005, 7: 4791.
[73] Dou C D, Wang C G, Zhang H Y, Gao H Z, Wang Y. Chem. Eur. J., 2010, 16: 10744.
[74] Piepenbrock, M O M, Clarke N, Steed J W. Langmuir, 2009, 25(15): 8451.
[75] Piepenbrock, M O M, Clarke N, Steed J W. Soft Matter, 2010, 6: 3541.
[76] Piepenbrock, M O M, Clarke N, Steed J W. Soft Matter, 2011, 7: 2412.
[77] Meazza L, Foster J A, Fucke K, Metrangolo P, Resnati G, Steed J W. Nature Chem., 2013, 5: 42.
[78] Yamanaka M. J. Incl. Phenom. Macrocycl. Chem., 2013, 77: 33.
[79] de Loos M, Ligtenbarg, A G J, van Esch J, Kooijman H, Spek A L, Hage R, Kellogg R M, Feringa B L. Eur. J. Org. Chem., 2000, 3675.
[80] Stanley C E, Clarke N, Anderson K M, Elder J A, Lenthall J T, Steed J W. Chem. Commun., 2006, 3199.
[81] Zhou Y F, Yi T, Li T C, Zhou Z G, Li F Y, Huang W, Huang C H. Chem. Mater., 2006, 18: 2974.
[82] Deng C, Fang R, Guan Y F, Jiang J L, Lin L, Wang L Y. Chem. Commun., 2012, 48: 7973.
[83] de Loos M, van Esch J H, Kellogg R M, Feringa B L. Tetrahedron., 2007, 63: 7285.
[84] Yamanaka M, Nakamura T, Nakagawa T, Itagaki H. Tetrahedron Lett., 2007, 48: 8990.
[85] Aoyama R, Amakatsu M, Yamanaka M. Supramol. Chem., 2011, 23: 140.
[86] Yamamichi S, Jinno Y, Haraya N, Oyoshi T, Tomitori H, Kashiwagi K, Yamanaka M. Chem. Commun., 2011, 47: 10344.
[87] Jinno Y, Yamanaka M. Chem. Asian J., 2012, 7: 1768.
[88] Yamanaka M, Haraya N, Yamamichi S. Chem. Asian J., 2011, 6: 1022.
[89] Tamaru S, Uchino S, Takeuchi M, Ikeda M, Hatano T, Shinkai S. Tetrahedron Lett., 2002, 43: 3751.
[90] Kishida T, Fujita N, Sada K, Shinkai S. Langmuir, 2005, 21: 9432.
[91] Lu C C, Su S K. Supramol. Chem., 2009, 21: 557.
[92] Ladet S, David L, Domard A. Nature, 2008, 452: 76.
[93] Elisseeff J. Nature Mater., 2008, 7: 271.

[1] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[2] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[3] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[4] 俞杰, 龚流柱. 手性氨基酸酰胺催化剂的发现及研究进展[J]. 化学进展, 2020, 32(11): 1729-1744.
[5] 智康康, 杨鑫. 天然产物凝胶及其凝胶质[J]. 化学进展, 2019, 31(9): 1314-1328.
[6] 裴强, 丁爱祥. 四重氢键自组装体系的设计与应用[J]. 化学进展, 2019, 31(2/3): 258-274.
[7] 林代武, 邢起国, 王跃飞, 齐崴, 苏荣欣, 何志敏. 多肽超分子手性自组装与应用[J]. 化学进展, 2019, 31(12): 1623-1636.
[8] 刘耀华, 刘育. 基于偶氮功能基的光控超分子组装[J]. 化学进展, 2019, 31(11): 1528-1539.
[9] 徐子悦, 张运昌, 林佳乐, 王辉, 张丹维, 黎占亭. 药物输送体系构筑中的超分子组装策略[J]. 化学进展, 2019, 31(11): 1540-1549.
[10] 郭家田, 卢玉超, 毕晨, 樊佳婷, 许国贺, 马晶军. 刺激响应型肽自组装及其应用[J]. 化学进展, 2019, 31(1): 83-93.
[11] 徐柳, 钱晨, 朱辰奇, 陈志鹏, 陈瑞*. 基于多肽的纳米药物递送系统的研究[J]. 化学进展, 2018, 30(9): 1341-1348.
[12] 姚闯, 张希, 黄勇力, 李蕾, 马增胜, 孙长庆. 水的结构和反常物性[J]. 化学进展, 2018, 30(8): 1242-1256.
[13] 王继乾*, 闫宏宇, 李洁, 张丽艳, 赵玉荣, 徐海*. 基于多肽自组装的人工金属酶[J]. 化学进展, 2018, 30(8): 1121-1132.
[14] 郑勰, 周一凡, 陈思远, 刘晓云, 查刘生. 刺激响应性电纺纳米纤维[J]. 化学进展, 2018, 30(7): 958-975.
[15] 周欣宇, 周春才*. 抗菌肽及类抗菌肽的设计、合成及应用[J]. 化学进展, 2018, 30(7): 913-920.
阅读次数
全文


摘要