English
新闻公告
More
化学进展 2014, Vol. 26 Issue (01): 19-29 DOI: 10.7536/PC130519 前一篇   后一篇

• 综述与评论 •

氮化碳聚合物半导体光催化

张金水, 王博, 王心晨*   

  1. 福州大学化学化工学院 光催化研究所 福州 350002
  • 收稿日期:2013-05-01 修回日期:2013-07-01 出版日期:2014-01-15 发布日期:2013-11-08
  • 通讯作者: 王心晨,e-mail:xcwang@fzu.edu.cn E-mail:xcwang@fzu.edu.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No.2013CB632405)和国家自然科学基金项目(21033003,21173043,J1103303)资助

Carbon Nitride Polymeric Semiconductor for Photocatalysis

Zhang Jinshui, Wang Bo, Wang Xinchen*   

  1. Research Institute of Photocatalysis, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002, China
  • Received:2013-05-01 Revised:2013-07-01 Online:2014-01-15 Published:2013-11-08
  • Supported by:

    The work was supported by the State Key Development Program for Basic Research of China (No. 2013CB632405) and the National Natural Science Foundation of China (No. 21033003, 21173043, J1103303)

半导体光催化技术通过太阳光驱动一系列重要的化学反应,将低密度的太阳能转化为高密度的化学能或直接降解和矿化有机污染物,在解决能源短缺和环境污染等问题方面具有重要的应用前景。最近,聚合物半导体石墨相氮化碳(g-C3N4),由于优异的化学稳定性和独特的电子能带结构,被作为一种廉价、稳定、不含金属组分的可见光光催化剂广泛应用于太阳能的光催化转化,如光解水产氢产氧、有机选择性光合成和有机污染物的降解等,引起人们的关注。本文将围绕g-C3N4光催化剂的改性研究,综述国内外近年来在g-C3N4光催化领域所取得一些重要进展,比如理论研究g-C3N4的组成结构及化学性质、金属/非金属掺杂调控g-C3N4的半导体能带结构、软/硬模板法优化g-C3N4的纳米结构、表面化学修饰改进g-C3N4的表面反应动力学过程及半导体复合提高光生载流子的分离效率等。最后,本文还对g-C3N4光催化的未来发展趋势进行展望。

Semiconductor photocatalysis via sunlight-driven photoredox reactions to directly convert solar energy into chemical energy or to mineralize organic pollutants, is regarded as a long-term solution to address the global energy and environmental problems. Recently, graphitic carbon nitride (g-C3N4), a polymeric semiconductor has been widely used as a low-cost, stable and metal-free visible-light-active photocatalyst in the sustainable utilization of solar energy, such as water splitting, organic photosynthesis and environmental remediation. This has attracted worldwide attention from energy and environmental relative fields. In this review, some recent advances in g-C3N4 photocatalysis are present, including the theoretical research of chemical structure and features of g-C3N4, metal/non-mental doping of g-C3N4 to adjust the semiconductive electronic band structure, soft/hard templates assisted the synthesis of g-C3N4 nanoarchictures, surface modification of g-C3N4 to overcome the high kinetic barrier for water reduction/oxidation, and as well as the construction of g-C3N4 based heterojunctions and composite photocatalysts to promote the separation of energy-wasteful charge recombination. The prospects for the development of highly efficient g-C3N4 based photocatalysts are also discussed.

Contents
1 Introduction
2 Mechanism study of g-C3N4 photocatalyst
2.1 Semiconductive band structure of g-C3N4
2.2 Photocatalytic performance of g-C3N4
3 Development of g-C3N4 photocatalyst
3.1 Theoretical calculation of g-C3N4 photocatalyst
3.2 Synthesis optimization of g-C3N4 photocatalyst
3.3 Nanostructuring g-C3N4 photocatalyst
3.4 Synthesis of g-C3N4 photocatalyst by copolymeri-zation
3.5 Semiconductor doping of g-C3N4 photocatalyst
3.6 Surface modification of g-C3N4 photocatalyst
3.7 Sensitization of g-C3N4 photocatalyst
3.8 g-C3N4 based composite photocatalysts
4 Conclusion and outlook

中图分类号: 

()

[1] 中华人民共和国国务院新闻办公室(The Information Office of the State Council of the People's Republic of China). 资源与人居环境(Resources Inhabitant and Environment), 2008, (4): 18.
[2] 高彩玲(Gao C L), 赵英明(Zhao Y M), 黄正文(Huang Z W), 张斌(Zhang B). 环境科学与管理(Environmental Science and Management), 2007, 32: 31.
[3] 李金铠(Li J K). 中国市场(China Market), 2011, (33): 39.
[4] Chen X, Shen S, Guo L, Mao S. Chem. Rev., 2010, 110: 6503.
[5] Kudo A, Miseki Y. Chem. Soc. Rev., 2009, 38: 253.
[6] Osterloh M. Chem. Mater., 2008, 20: 35.
[7] Fox M, Dulay M. Chem. Rev., 1993, 93: 341.
[8] Hoffmann M, Martin S, Choi W, Bahneman D. Chem. Rev., 1995, 95: 69.
[9] Fujishima A, Honda K. Nature, 1972, 238: 37.
[10] Maeda K, Domen K. J. Phys. Chem. Lett., 2010, 1: 2655.
[11] Kato H, Asakura K, Kudo A. J. Am. Chem. Soc., 2003, 125: 3082.
[12] Maeda K, Teramura K, Lu D L, Takata T, Saito N, Inoue Y, Domen K. Nature, 2006, 440: 295.
[13] Maeda K, Higashi M, Lu D, Abe R, Domen K. J. Am. Chem. Soc., 2010, 132: 5858.
[14] Yan H, Yang J, Ma G, Wu G, Zong X, Lei Z, Shi J, Li C. J. Catal., 2009, 266: 165.
[15] Wang X, Blechert S, Antonietti M. ACS Catal., 2012, 2: 1596.
[16] Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J, Domen K, Antonietti M. Nat. Mater., 2009, 8: 76.
[17] Maeda K, Wang X, Nishihara Y, Lu D, Antonietti M, Domen K. J. Phys. Chem. C, 2009, 113: 4940.
[18] Zhang J, Chen X, Takanabe K, Maeda K, Domen K, Epping J, Fu X, Antonietti M, Wang X. Angew. Chem. Int. Ed., 2010, 49: 441.
[19] Cui Y, Ding Z, Liu P, Antonietti M, Fu X, Wang X. Phys. Chem. Chem. Phys., 2012, 14: 1455.
[20] Chen X, Zhang J, Fu X, Antonietti M, Wang X. J. Am. Chem. Soc., 2009, 131: 11658.
[21] Ding Z, Chen X, Antonietti M, Wang X. ChemSusChem, 2011, 4: 274.
[22] Yan S, Li Z, Zou Z. Langmuir, 2009, 25: 10397.
[23] Kiskan B, Zhang J, Wang X, Antonietti M, Yagci Y. ACS Macro Lett., 2012, 1: 546.
[24] Xu Y, Gao S. Int. J. Hydrogen Energ., 2012, 37: 11072.
[25] Wei W, Jacob T. Phys. Rev. B, 2013, 87: 085202.
[26] Pan H, Zhang Y, Shenoy V, Gao H. ACS Catal., 2011, 1: 99.
[27] Ma X, Lv Y, Xu J, Liu Y, Zhang R, Zhu Y. J. Phys. Chem. C, 2012, 116: 23485.
[28] Liu G, Niu P, Sun C, Smith S, Chen Z, Lu G, Cheng H. J. Am. Chem. Soc., 2010, 132: 11642.
[29] Dong G, Zhao K, Zhang L. Chem. Commun, 2012, 48: 6178.
[30] Chen G, Gao S. Chinese Phys. B, 2012, 21: 107101.
[31] Aspera S, David M, Kasai H. Jpn. J. Appl. Phys., 2010, 49: 115703.
[32] Aspera S, Kasai H, Kawai H. Surf. Sci., 2012, 606: 892.
[33] Xin G, Meng Y. J. Chem., 2013, 187912.
[34] Zhang J, Sun J, Maeda K, Domen K, Liu P, Antonietti M, Fu X, Wang X. Energy Environ. Sci., 2011, 4: 675.
[35] Cui Y, Zhang J, Zhang G, Huang J, Liu P, Antonietti M, Wang X. J. Mater. Chem., 2011, 21: 13032.
[36] Zhang G, Zhang J, Zhang M, Wang X. J. Mater. Chem., 2012, 22: 8083.
[37] Zhang J, Zhang M, Zhang G, Wang X. ACS Catal., 2012, 2: 940.
[38] Dong F, Wu L, Sun Y, Fu M, Wu Z, Lee S. J. Mater. Chem., 2011, 21: 15171.
[39] Liu J, Zhang T, Wang Z, Dawson G, Chen W. J. Mater. Chem., 2011, 21: 14398.
[40] Dong G, Zhang L. J. Mater. Chem., 2012, 22: 1160.
[41] Tyborski T, Merschjann C, Orthmann S, Yang F, Lux-Steine M. J. Phys. Conden. Matter, 2012, 24, 162201.
[42] 陈秀芳(Chen X F). 福州大学博士论文(Doctoral Dissertation of Fuzhou University), 2011.
[43] Ge L. Mater. Lett., 2011, 65: 2652.
[44] Yan H, Chen Y, Xu S. Int. J. Hydrogengy Energ., 2012, 37: 125.
[45] Zou X, Li G, Wang Y, Zhao J, Yan C, Guo M, Li L, Chen J. Chem. Commun., 2011, 47: 1066.
[46] Ham Y, Maeda K, Cha D, Takanabe K, Domen K. Chem. Asian J., 2013, 8: 218.
[47] Schwinghammer K, Tuffy B, Mesch M, Wirnhier E, Martineau C, Taulelle F, Schnick W, Senker J, Lotsch B V. Angew. Chem. Int. Ed., 2013, 52: 2435.
[48] Cui Y, Ding Z, Fu X, Wang X. Angew. Chem. Int. Ed., 2012, 51: 11814.
[49] Wang X, Maeda K, Chen X, Takanabe K, Domen K, Hou Y, Fu X, Antonietti M. J. Am. Chem. Soc., 2009, 131: 1680.
[50] Chen X, Jun Y, Takanabe K, Maeda K, Domen K, Fu X Z, Antonietti M, Wang X. Chem. Mater., 2009, 21: 4093.
[51] Zhang J, Guo F, Wang X. Adv. Funct. Mater., 2013, 23: 3008.
[52] Li X, Zhang J, Chen X, Fischer A, Thomas A, Antonietti M, Wang X. Chem. Mater., 2011, 23: 4344.
[53] Sun J, Zhang J, Zhang M, Antonietti M, Fu X, Wang X. Nat. Commun., 2012, 3: 1139.
[54] Jiang G, Zhou C, Xia X, Yang F, Tong D, Yu W, Liu S. Mater. Lett., 2010, 64: 2718.
[55] Wang Y, Wang X, Antonietti M, Zhang Y. ChemSusChem, 2010, 3: 435.
[56] Yan H. Chem. Commun., 2012, 48: 3430.
[57] Kailasam K, Epping J D, Thomas A, Losse S, Junge H. Energy Environ. Sci., 2011, 4: 4668.
[58] Niu P, Zhang L, Liu G, Cheng H M. Adv. Funct. Mater., 2012, 22: 4763.
[59] Yang S, Gong Y J, Zhang J, Zhan L, Ma L, Fang Z, Vajtai R, Wang X, Ajayan P. Adv. Mater., 2013, 25: 2452.
[60] Jun Y, Lee E, Wang X, Hong W, Stucky G, Thomas A. Adv. Funct. Mater., 2013, 23: 3661.
[61] Zhang J, Zhang G, Chen X, Lin S, Mhlmann L, Doga G, Lipner G, Antonietti M, Blechert S, Wang X. Angew. Chem. Int. Ed., 2012, 51: 3183.
[62] Zhang J, Zhang M, Lin S, Fu X, Wang X. J. Catal., 2013, DOI: 10.1016/j. jcat. 2013.01.008.
[63] 郑华荣(Zheng H R), 张金水(Zhang J S), 王心晨(Wang X C), 付贤智(Fu X Z). 物理化学学报(Acta Phys. Chim. Sin. ), 2012, 28: 2336.
[64] 张金龙(Zhang J L), 陈锋(Chen F), 何斌(He B). 光催化(Photocatalysis). 上海: 华东理工大学出版社(Shanghai: East China University of Science and Technology Press), 2004. 44.
[65] Wang X, Chen X, Thomas A, Fu X, Antonietti M. Adv. Mater., 2009, 21: 1609.
[66] Yue B, Li Q, Iwai H, Kako T, Ye J. Sci. Technol. Adv. Mater., 2011, 12: 34401.
[67] Yan S C, Li Z, Zou Z. Langmuir, 2010, 26: 3894.
[68] Zhang Y, Mori T, Ye J H, Antonietti M. J. Am. Chem. Soc., 2010, 132: 6294.
[69] Li J, Shen B, Hong Z, Lin B, Gao B, Chen Y. Chem. Commun., 2012, 48: 12017.
[70] Wang Y, Di Y, Antonietti M, Li H, Chen X, Wang X. Chem. Mater., 2010, 22: 5119.
[71] Di Y, Wang X, Thomas A, Antonietti M. ChemCatChem, 2010, 2: 834.
[72] Meng Y, Shen J, Chen D, Xin G. Rare Metals, 2011, 30: 276.
[73] Ge L, Han C, Liu J, Li Y. Appl. Catal. A: General, 2011, 409/410: 215.
[74] Li X, Wang X, Antonietti M. Chem. Sci., 2012, 3: 2170.
[75] Liu J, Zhang Y, Lu L, Wu G, Chen W. Chem. Commun., 2012, 48: 8826.
[76] Guo Y, Chu S, Yan S, Wang Y, Zou Z. Chem. Commun., 2010, 46: 7325.
[77] Takanabe K, Kamata K, Wang X, Antonietti M, Kubota J, Domen K. Phys. Chem. Chem. Phys., 2010, 12: 13020.
[78] Min S, Lu G. J. Phys. Chem. C, 2012, 116: 19644.
[79] Wang Y, Hong J, Zhang W, Xu R. Catal. Sci. Technol., 2013, 3: 1703.
[80] He Y, Cai J, Li T, Wu Y, Yi Y, Luo M, Zhao L. Ind. Eng. Chem. Res., 2012, 51: 14729.
[81] Bledowski M, Wang L, Ramakrishnan A, Khavryuchenko O, Khavryuchenko V, Ricci P, Strunk J, Cremer T, Kolbeck C, Beranek R. Phys. Chem. Chem. Phys., 2011, 13: 21511.
[82] Mitoraj D, Beranek R, Kisch H. Photochem. Photobiol. Sci., 2010, 9: 31.
[83] Yan H, Yang H. J. Alloy. Compd., 2011, 509: L26.
[84] Ang T, Chan Y. J. Phys. Chem. C, 2011, 115: 15965.
[85] Yang N, Li G, Wang W, Yang X, Zhang W. J. Phys. Chem. Solids, 2011, 72: 1319.
[86] Zhou X, Jin B, Li L, Peng F, Wang H, Yu H, Fang Y. J. Mater. Chem., 2012, 22: 17900.
[87] Wang L, Bledowski M, Ramakrishnan A, König D, Ludwig A, Beranek R. J. Electrochem. Soc., 2012, 159: H616.
[88] Chai B, Peng T, Mao J, Li K, Zan L. Phys. Chem. Chem. Phys., 2012, 14: 16745.
[89] Wang J, Zhang W. Electrochim. Acta, 2012, 71: 10.
[90] Zhao S, Chen S, Yu H, Quan X. Sep. Sci. Technol., 2012, 99: 50.
[91] Liu W, Wang M, Xu C, Chen S. Chem. Eng. J., 2012, 209: 386.
[92] Wang Y, Shi R, Lin J, Zhu Y. Energy Environ. Sci., 2011, 4: 2922.
[93] Sun J, Yuan Y, Qiu L, Jiang X, Xie A, Shen Y, Zhu J. Dalton Trans., 2012, 41: 6756.
[94] Li G, Yang N, Wang W, Zhang W. J. Phys. Chem. C, 2009, 113: 14829.
[95] Li Q Y, Yue B, Iwai H, Kako T, Ye J. J. Phys. Chem. C, 2010, 114: 4100.
[96] Xu X, Liu G, Randorn C, Irvine J. Int. J. Hydrogen Energy, 2011, 36: 13501.
[97] Kang H W, Lim S, Song D, Park S. Int. J. Hydrogen Energy, 2012, 37: 11602.
[98] Pan C, Xu J, Wang Y, Li D, Zhu Y. Adv. Funct. Mater., 2012, 22: 1518.
[99] Ge L, Han C, Liu J. Appl. Catal. B: Environ., 2011, 108/109: 100.
[100] Wang Y, Bai X, Pan C, He J, Zhu Y. J. Mater. Chem., 2012, 22: 11568.
[101] Sun L, Zhao X, Jia C, Zhou Y, Cheng X, Li P, Liu L, Fan W. J. Mater. Chem., 2012, 22: 23428.
[102] Pan H, Li X, Zhuang Z, Zhang C. J. Mol. Catal. A: Chem., 2011, 345: 90.
[103] Yan S, Lv S, Li Z, Zou Z. Dalton Trans., 2010, 39: 1488.
[104] Yang F, Lublow M, Orthmann S, Merschjann C, Tyborski T, Rusu M, Kubala S, Thomas A, Arrigo R, Hävecker M, Schedel-Niedrig M. ChemSusChem, 2012, 5: 1227.
[105] Hou Y, Laursen A, Zhang J, Zhang G, Zhu Y, Wang X, Dahl S, Chorkendorff I. Angew. Chem. Int. Ed., 2013, 52: 3621.
[106] Zhang J, Grzelczak M, Hou Y, Maeda K, Domen K, Fu X, Antonietti M, Wang X. Chem. Sci., 2012, 3: 443.
[107] Yang M, Huang Q, Jing X. Mater. Sci. Eng. B, 2012, 177: 600.
[108] Fu J, Tian Y, Chang B, Xi F, Dong X. J. Mater. Chem., 2012, 22: 21159.
[109] Xu H, Yan J, Xu Y, Song Y, Li H, Xia J, Huang C, Wan H. Appl. Catal. B: Environ., 2013, 129: 182.
[110] Xiang Q, Yu J, Jaroniec M. J. Phys. Chem. C, 2011, 115: 7355.
[111] Zhang Y, Mori T, Niu L, Ye J. Energy Environ. Sci., 2011, 4: 4517.
[112] Liao G, Chen S, Quan X, Yu H, Zhao H. J. Mater. Chem., 2012, 22: 2721.
[113] Ge L, Han C. Appl. Catal. B: Environ., 2012, 117/118: 268.
[114] Suryawanshi A, Dhanasekaran P, Mhamane D, Kelkar S, Patil S, Gupta N, Ogale S. Int. J. Hydrogen Energ., 2012, 37: 9584.
[115] Yan H, Huang Y. Chem. Commun., 2011, 47: 4168.
[116] Zhang J, Zhang M, Sun R, Wang X. Angew. Chem. Int. Ed., 2012, 51: 10145.
[117] Ge L, Han C, Liu J. J. Mater. Chem., 2012, 22: 11843.
[118] Gawande S, Thakare S. ChemCatChem, 2012, 4: 1759.
[119] Hong J, Xia X, Wang Y, Xu R. J. Mater. Chem., 2012, 22: 15006.
[120] Lin Z, Wang X. Angew. Chem. Int. Ed., 2013, 52: 1735.
[121] Wang Y, Wang X, Antonietti M. Angew. Chem. Int. Ed., 2012, 51: 68.

[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[3] 郭琪瑶, 段加龙, 赵媛媛, 周青伟, 唐群委. 混合能量采集太阳能电池―从原理到应用[J]. 化学进展, 2023, 35(2): 318-329.
[4] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[5] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[6] 张德善, 佟振合, 吴骊珠. 人工光合作用[J]. 化学进展, 2022, 34(7): 1590-1599.
[7] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[8] 曾毅, 任永生, 马文会, 陈辉, 詹曙, 曹静. 冶金法生产太阳能级硅的除硼方法、技术及工艺[J]. 化学进展, 2022, 34(4): 926-949.
[9] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[10] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[11] 薛朝鲁门, 刘宛茹, 白图雅, 韩明梅, 莎仁, 詹传郎. 非富勒烯受体DA'D型稠环单元的结构修饰及电池性能研究[J]. 化学进展, 2022, 34(2): 447-459.
[12] 杜宇轩, 江涛, 常美佳, 戎豪杰, 高欢欢, 尚玉. 基于非稠环电子受体的有机太阳能电池材料与器件[J]. 化学进展, 2022, 34(12): 2715-2728.
[13] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[14] 王文婧, 曾滴, 王举雪, 张瑜, 张玲, 王文中. 铋基金属有机框架的合成与应用[J]. 化学进展, 2022, 34(11): 2405-2416.
[15] 吴明明, 林凯歌, 阿依登古丽·木合亚提, 陈诚. 超浸润光热材料的构筑及其多功能应用研究[J]. 化学进展, 2022, 34(10): 2302-2315.
阅读次数
全文


摘要

氮化碳聚合物半导体光催化