English
新闻公告
More
化学进展 2013, Vol. 25 Issue (12): 2053-2067 DOI: 10.7536/PC130515 前一篇   后一篇

• 综述与评论 •

复杂形貌磁性复合微球制备及其生物应用

李恬1,2, 王祎龙*2, 郭方方2, 时东陆2   

  1. 1. 同济大学材料科学与工程学院 上海 200092;
    2. 同济大学医学院 生物医学工程与纳米科学研究院 上海 200092
  • 收稿日期:2013-05-01 修回日期:2013-08-01 出版日期:2013-12-15 发布日期:2013-09-17
  • 通讯作者: 王祎龙 E-mail:yilongwang@tongji.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.51173135);上海市科委纳米专项(No.11nm0506100)和中央高校基本科研业务费专项资金资助

Synthesis and Biomedical Applications of Magnetic Nanocomposites with Complex Morphologies

Li Tian1,2, Wang Yilong*2, Guo Fangfang2, Shi Donglu2   

  1. 1. School of Materials Science and Technology, Tongji University, Shanghai 200092;
    2. Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai 200092, China
  • Received:2013-05-01 Revised:2013-08-01 Online:2013-12-15 Published:2013-09-17

具有复杂形貌的磁性复合材料显示出独特的物理和化学性质,在药物载体、体外生物检测、体内成像和磁转染、磁热疗等生物医学领域具有良好的应用前景。本文就几种典型的除简单核-壳结构外的磁性复合材料的形貌和结构分类、制备方法和应用研究进展进行了全面的综述,主要包括Janus、Yolk-Shell和介孔结构复合微球的相关研究,并对复杂形貌的磁性复合微球制备技术的改进及应用上的拓展作出展望。

Magnetic nanocomposites with complex structures and surface functionalities show the unique physical and chemical properties. Their applications in the drug carrier, bio-detection, in vivo imaging and catalysts are very promising. In this review, several typical magnetic composites with complex architectures, including Janus structure, Yolk-Shell shape and mesoporous structure composite are thoroughly discussed, the progresses in preparation method and biomedical applications are reviewed. The outlook of improvement of fabrication technology and potential applications are also concerned.

Contents
1 Introduction
2 The study of Janus magnetic composites
2.1 Inorganic-inorganic magnetic Janus particles
2.2 Inorganic-organic magnetic Janus particles
3 The study of Yolk-Shell magnetic composites
4 The study of magnetic mesoporous composites
4.1 Core-Shell mesoporous composites
4.2 Janus mesoporous composites
4.3 Yolk-Shell mesoporous composites
4.4 Other mesoporous composites
5 The application of magnetic composites
5.1 The application of Janus magnetic composites
5.2 The application of Yolk-Shell magnetic composites
5.3 The application of magnetic mesoporous compo-sites
6 Conclusions

中图分类号: 

()

[1] Perro A, Reculusa S, Ravaine S, Bourgeat-Lami E, Duguet E. J. Mater. Chem., 2005, 15: 3745—3760
[2] De Gennes P G. Rev. Mod. Phys., 1992, 64: 645—648
[3] Hu J, Zhou S X, Sun Y Y, Fang X S, Wu L M. Chem. Soc. Rev., 2011, 41: 4356—4378
[4] Gu H, Yang Z, Gao J, Chang C K, Xu B. J. Am. Chem. Soc., 2004, 127: 34—35
[5] Kaewsaneha C, Tangboriboonrat P, Polpanich D, Eissa M, Elaissari A. Colloids Surf., A, 2013, DOI: 10.1016/j. colsurfa. 201301004.
[6] Ohnuma A, Abe R, Shibayama T, Ohtani B. Chem. Commun., 2007, 3491—3493
[7] Glaser N, Adams D J, Boker A, Krausch G. Langmuir, 2006, 22: 5227—5229
[8] Lattuada M, Hatton T A. Nano Today, 2011, 6: 286—308
[9] Yang J, Elim H I, Zhang Q B, Lee J Y, Ji W. J. Am. Chem. Soc., 2006, 128: 11921—11926
[10] Shi W L, Zeng H, Sahoo Y, Ohulchanskyy T Y, Ding Y, Wang Z L, Swihart M, Prasad P N. Nano Lett., 2006, 6: 875—881
[11] Kwon K W, Shim M. J. Am. Chem. Soc., 2005, 127: 10269—10275
[12] Gu H W, Zheng R K, Zhang X X, Xu B. J. Am. Chem. Soc., 2004, 126: 5664—5665
[13] Selvan S T, Patra P K, Ang C Y, Ying J Y. Angew. Chem. Int. Ed., 2007, 46: 2448—2452
[14] Yu H, Chen M, Rice P M, Wang S X, White R L, Sun S H. Nano Lett., 2005, 5: 379—382
[15] Wang C, Xu C J, Zeng H, Sun S H. Adv. Mater., 2009, 21: 3045—3052
[16] Nandwana V, Chaubey G S, Yano K, Rong C B, Liu J P. J. Appl. Phys., 2009, 105: art. no. 014303
[17] Figuerola A, Fiore A, Di Corato R, Falqui A, Giannini C, Micotti E, Lascialfari A, Corti M, Cingolani R, Pellegrino T, Cozzoli P D, Manna L. J. Am. Chem. Soc., 2008, 130: 1477—1487
[18] Zhao N, Gao M Y. Adv. Mater., 2009, 21: 184—193
[19] Lattuada M, Hatton T A. J. Am. Chem. Soc, 2007, 129: 12878—12889
[20] Feyen M, Weidenthaler C, Schüth F, Lu A H. J. Am. Chem. Soc, 2010, 132: 6791—6799
[21] Montagne F, Mondain-Monval O, Pichot C, Elassari A. J. Polym. Sci. Part A: Polym. Chem., 2006, 44: 2642—2656
[22] Kaewsaneha C, Tangboriboonrat P, Polpanich D, Eissa M, Elaissari A. ACS Appl. Mater. Interfaces, 2013, 5: 1857—1869
[23] Ge J P, Hu Y X, Zhang T R, Yin Y D. J. Am. Chem. Soc., 2007, 129: 8974—8975
[24] Braconnot S, Eissa M M, Elaissari A. Colloid Polym. Sci., 2013, 291: 193—203
[25] Teo B M, Suh S K, Hatton T A, Ashokkumar M, Grieser F. Langmuir, 2011, 27: 30—33
[26] Wang Y L, Xu H, Ma Y S, Guo F F, Wang F, Shi D L. Langmuir, 2011, 27: 7207—7212
[27] Zhang L, Zhang F, Dong W F, Song J F, Huo Q S, Sun H B. Chem. Commun., 2011, 47: 1225—1227
[28] Ning Y, Wang C, Ngai T, Tong Z. Langmuir., 2013, 29: 5138—5144
[29] Chang E P, Hatton T A. Langmuir, 2012, 28: 9748—9758
[30] Furlan M, Kluge J, Mazzotti M, Lattuada M. J. Supercrit. Fluids, 2010, 54: 348—356
[31] Isojima T, Suh S K, Sande J B V, Hatton T A. Langmuir, 2009, 25: 8292—8298
[32] Yabu H, Kanahara M, Shimomura M, Arita T, Harano K, Nakamura E, Higuchi T, Jinnai H. ACS Appl. Mater. Interfaces, 2013, 5: 3262—3266
[33] Kamata K, Lu Y, Xia Y N. J. Am. Chem. Soc., 2003, 125:2384—2385
[34] Arnal P M, Comotti M, Schüth F. Angew. Chem. Int. Ed., 2006, 118: 8404—8407
[35] Lee J, Park J C, Bang J U, Song H. Chem. Mater., 2008, 20: 5839—5844
[36] Chen Y, Chen H R, Guo L M, He Q J, Chen F, Zhou J, Feng J W, Shi J L. ACS Nano, 2010, 4: 529—539
[37] Liu J, Qiao S Z, Chen J S, Lou X W, Xing X R, Lu G Q. Chem. Commun., 2011, 47: 12578—12591
[38] Zhu Y F, Kockrick E, Ikoma T, Hanagata N, Kaskel S. Chem. Mater., 2009, 21: 2547—2553
[39] Wang Y, Tang C, Deng Q, Liang C, Ng D H L, Kwong F, Wang H, Cai W, Zhang L, Wang G. Langmuir, 2010, 26: 14830—14834
[40] Wang Z, Luan D, Madhavi S, Li C M, Lou X W. Chem. Commun., 2011, 47: 8061—8063
[41] De Vos D E, Thibault-Starzyk F, Knops-Gerrits P P, Parton R F, Jacobs P A. Macromol. Symp., 1994, 80: 157—184
[42] Guo L, Cui X, Li Y, He Q, Zhang L, Bu W, Shi J. Chem. Asian J., 2009, 4: 1480—1485
[43] Yin Y, Rioux R M, Erdonmez C K, Hughes S, Somorjai G A, Alivisatos A P. Science, 2004, 304: 711—714
[44] Yin Y, Erdonmez C K, Cabot A, Hughes S, Alivisatos A P. Adv. Funct. Mater., 2006, 16: 1389—1399
[45] Gao J, Liang G, Cheung J S, Pan Y, Kuang Y, Zhao F, Zhang B, Zhang X, Wu E X, Xu B. J. Am. Chem. Soc., 2008, 130: 11828—11833
[46] Gao J, Liang G, Zhang B, Kuang Y, Zhang X, Xu B. J. Am. Chem. Soc., 2007, 129: 1428—1433
[47] Lou X W, Archer L A, Yang Z C. Adv. Mater., 2008, 20: 3987—4019
[48] Caruso F, Caruso R A, Möhwald H. Science, 1998, 282: 1111—1114
[49] Lou X W, Archer L A. Adv. Mater., 2008, 20: 1853—1858
[50] Choi W S, Koo H Y, Zhongbin Z, Li Y, Kim D Y. Adv. Funct. Mater., 2007, 17: 1743—1749
[51] Lou X W, Yuan C, Zhang Q, Archer L A. Angew. Chem. Int. Ed., 2006, 45: 3825—3829
[52] Chen Y, Chen H, Guo L, He Q, Chen F, Zhou J, Feng J, Shi J. ACS Nano, 2009, 4: 529—539
[53] Wang Y L, Wang F, Chen B D, Xu H, Shi D L. Chem. Commun., 2011, 47: 10350—10352
[54] Sun Q, Guo C Z, Wang G H, Li W C, Bongard H J, Lu A H. Chem. Eur. J., 2013, 19: 6217—6220
[55] Liu J, Cheng J, Che R, Xu J, Liu M, Liu Z. ACS Appl. Mater. Inter., 2013, 5: 2503—2509
[56] Robinson D B, Persson H H J, Zeng H, Li G, Pourmand N, Sun S, Wang S X. Langmuir, 2005, 21: 3096—3103
[57] Liu J, Wang B, Hartono S B, Liu T, Kantharidis P, Middelberg A P J, Lu G Q, He L, Qiao S Z. Biomaterials, 2012, 33: 970—978
[58] Li X, Xie Q R, Zhang J, Xia W, Gu H. Biomaterials, 2011, 32: 9546—9556
[59] Rosenholm J M, Mamaeva V, Sahlgren C, Linden M. Nanomed., 2012, 7: 111—120
[60] Andersson J, Rosenholm J, Areva S, Linden M. Chem. Mater., 2004, 16: 4160—4167
[61] Chen K, Zhang J, Gu H. J. Mater. Chem., 2012, 22: 22005—22012
[62] Kecht J, Schlossbauer A, Bein T. Chem. Mater., 2008, 20: 7207—7214
[63] Rosenholm J M, Penninkangas A, Linden M. Chem. Commun., 2006, 909—3911
[64] Kang X, Cheng Z, Yang D, Ma P a, Shang M, Peng C, Dai Y, Lin J. Adv. Funct. Mater., 2012, 22: 1539—1539
[65] Zhao W R, Gu J L, Zhang L X, Chen H R, Shi J L. J. Am. Chem. Soc., 2005, 127: 8916—8917
[66] Fuertes A B, Sevilla M, Valdes-Solis T, Tartaj P. Chem. Mater., 2007, 19(22): 5418—5423
[67] Chen L B, Zhang F, Wang C C. Small, 2009, 5: 621—628
[68] Kim J, Lee J E, Lee J, Yu J H, Kim B C, An K, Hwang Y, Shin C H, Park J G, Hyeon T. J. Am. Chem. Soc., 2006, 128: 688—689
[69] Kim J, Kim H S, Lee N, Kim T, Kim H, Yu T, Song I C, Moon W K, Hyeon T. Angew. Chem. Int. Ed., 2008, 47: 8438—8441
[70] Lu A H, Li W C, Kiefer A, Schmidt W, Bill E, Fink G, Schüth F. J. Am. Chem. Soc., 2004, 126: 8616—8617
[71] Kim J, Lee J, Na H B, Kim B C, Youn J K, Kwak J H, Moon K, Lee E, Kim J, Park J, Dohnalkova A, Park H G, Gu M B, Chang H N, Grate J W, Hyeon T. Small, 2005, 1: 1203—1207
[72] Lin Y S, Wu S H, Hung Y, Chou Y H, Chang C, Lin M L, Tsai C P, Mou C Y. Chem. Mater., 2006, 18: 5170—5172
[73] Zhang L, Qiao S Z, Jin Y G, Chen Z G, Gu H C, Lu G Q. Adv. Mater., 2008, 20: 805—809
[74] Lu A H, Li W C, Matoussevitch N, Spliethoff B, Bonnemann H, Schüth F. Chem. Commun., 2005, 98—100
[75] Souza K C, Salazar-Alvarez G, Ardisson J D, Macedo W A, Sousa E M B. Nanotechnology, 2008, 19: art. no. 185603
[76] Zhao W R, Chen H R, Li Y S, Li L, Lang M D, Shi J L. Adv. Funct. Mater., 2008, 18: 2780—2788
[77] Zhou J, Wu W, Caruntu D, Yu M H, Martin A, Chen J F, O'Connor C J, Zhou W L. J. Phys. Chem. C, 2007, 111: 17473—17477
[78] Xia L Y, Zhang M Q, Yuan C, Rong M Z. J. Mater. Chem., 2011, 21: 9020—9026
[79] Wang F, Tang Y, Zhang B, Chen B, Wang Y. J. Colloid. Interface Sci., 2012, 386: 129—134
[80] Zhang L, Zhang F, Dong W F, Song J F, Huo Q S, Sun H B. Chem. Commun., 2011, 47: 1225—1227
[81] Liu J, Qiao S Z, Hu Q H, Lu G Q. Small, 2011, 7: 425—443
[82] Lin Y S, Wu S H, Tseng C T, Hung Y, Chang C, Mou C Y. Chem. Commun., 2009, 3542—3544
[83] Yeo K M, Shin J, Lee I S. Chem. Commun., 2010, 46: 64—66
[84] Yang Y, Liu J, Li X, Liu X, Yang Q. Chem. Mater., 2011, 23: 3676—3684
[85] Zhang Q, Ge J, Goebl J, Hu Y, Lu Z, Yin Y. Nano Res., 2009, 2: 583—591
[86] Salgueiriño Maceira V, Correa Duarte M A, Spasova M, Liz Marzan L M, Farle M. Adv. Funct. Mater., 2006, 16: 509—514
[87] Salgueirino Maceira V, Correa Duarte M A, Farle M, Lopez Quintela A, Sieradzki K, Diaz R. Chem. Mater., 2006, 18: 2701—2706
[88] Slowing I I, Vivero-Escoto J L, Wu C W, Lin V S Y. Adv. Drug Delivery Rev., 2008, 60: 1278—1288
[89] Giri S, Trewyn B G, Stellmaker M P, Lin V S Y. Angew. Chem. Int. Ed., 2005, 44: 5038—5044
[90] Zhu Y, Kockrick E, Ikoma T, Hanagata N, Kaskel S. Chem. Mater., 2009, 21: 2547—2553
[91] Sen T, Bruce I J. Microporous Mesoporous Mater., 2009, 120: 246—251
[92] Hao R, Xing R J, Xu Z C, Hou Y L, Gao S, Sun S H. Adv. Mater., 2010, 22: 2729—2742
[93] Xu C J, Wang B D, Sun S H. J. Am. Chem. Soc., 2009, 131: 4216—4217
[94] Kelland L. Clin. Cancer Res., 2007, 13: 4960—4963
[95] Wang D, Lippard S J. Nat. Rev. Drug Discovery, 2005, 4: 307—320
[96] Jiang J, Gu H, Shao H, Devlin E, Papaefthymiou G C, Ying J Y. Adv. Mater., 2008, 20: 4403—4407
[97] Hu S H, Gao X H. J. Am. Chem. Soc., 2010, 132: 7234—7237
[98] Sotiriou G A, Hirt A M, Lozach P Y, Teleki A, Krumeich F, Pratsinis S E. Chem. Mater., 2011, 23: 1985—1992
[99] Wang F, Pauletti G M, Wang J, Zhang J, Ewing R C, Wang Y, Shi D. Adv. Mater., 2013, 25: 3485—3489
[100] Lou X W, Archer L A, Yang Z. Adv. Mater., 2008, 20: 3987—4019
[101] Wu H, Liu G, Zhang S, Shi J, Zhang L, Chen Y, Chen F, Chen H. J. Mater. Chem., 2011, 21: 3037—3045
[102] Zhu Y, Ikoma T, Hanagata N, Kaskel S. Small, 2009, 6: 471—478
[103] Wu S H, Hung Y, Mou C Y. Chem. Commun., 2011, 47: 9972—9985
[104] Zhang F, Braun G B, Pallaoro A, Zhang Y, Shi Y, Cui D, Moskovits M, Zhao D, Stucky G D. Nano Lett., 2011, 12: 61—67
[105] Lin Y S, Haynes C L. Chem. Mater., 2009, 21: 3979—3986
[106] Hu S H, Chen Y Y, Liu T C, Tung T H, Liu D M, Chen S Y. Chem. Commun., 2011, 47: 1776—1778
[107] Wu H, Zhang S, Zhang J, Liu G, Shi J, Zhang L, Cui X, Ruan M, He Q, Bu W. Adv. Funct. Mater., 2011, 21: 1850—1862
[108] Wei L M, Hu N T, Zhang Y F. Materials, 2010, 3: 4066—4079
[109] Liong M, Lu J, Kovochich M, Xia T, Ruehm S G, Nel A E, Tamanoi F, Zink J I. ACS Nano, 2008, 2: 889—896
[110] Zhang X, Clime L, Roberge H, Normandin F, Yahia L, Sacher E, Veres T. J. Phys. Chem. C, 2011, 115: 1436—1443

[1] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[2] 程倩, 于佳酩, 霍薪竹, 沈雨萌, 刘守新. 稀土氟化物上转换荧光增强及应用[J]. 化学进展, 2019, 31(12): 1681-1695.
[3] 吴锦钧, 杨震, 焦剑梅, 孙鹏飞, 范曲立, 黄维. 水溶性苝酰亚胺类材料的合成及其生物应用[J]. 化学进展, 2017, 29(2/3): 216-230.
[4] 孙盟盟, 何勇, 杨万泰, 尹梅贞. 磷酸乙二酯类聚合物的合成及其生物应用[J]. 化学进展, 2013, 25(12): 2093-2102.
[5] 陈梦君, 杨万泰, 尹梅贞* . 纳米粒子的分类合成及其在生物领域的应用[J]. 化学进展, 2012, 24(12): 2403-2414.