English
新闻公告
More
化学进展 2013, Vol. 25 Issue (12): 2011-2019 DOI: 10.7536/PC130419 前一篇   后一篇

• 综述与评论 •

非Cu基金属负载分子筛上碳氢化合物选择性催化还原氮氧化物

陈艳平1,2, 程党国*2, 陈丰秋1,2, 詹晓力2   

  1. 1. 浙江大学生物质化工教育部重点实验室 杭州 310027;
    2. 浙江大学化学工程与生物工程学系 杭州 310027
  • 收稿日期:2013-04-01 修回日期:2013-06-01 出版日期:2013-12-15 发布日期:2013-09-17
  • 通讯作者: 程党国 E-mail:dgcheng@zju.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.21076182)资助

Selective Catalytic Reduction of NOx by Hydrocarbons over Copper-Free Metal Supported Zeolite

Chen Yanping1,2, Cheng Dangguo*2, Chen Fengqiu1,2, Zhan Xiaoli2   

  1. 1. Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China;
    2. Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
  • Received:2013-04-01 Revised:2013-06-01 Online:2013-12-15 Published:2013-09-17

碳氢化合物广泛存在于贫燃发动机尾气中,且原料易得无污染,以碳氢化合物为还原剂选择性催化还原NOx在富氧汽车尾气处理上具有一定的现实意义和应用前景。金属负载分子筛脱除NOx具有活性高及对环境友好等优点。本文综述了Fe、Co、In、Mn、Pd等非Cu基金属负载分子筛上碳氢化合物选择性催化还原NOx反应机理和催化剂性能等方面的研究进展,并在归纳和总结已有研究成果的基础上展望了非Cu基负载分子筛的研究发展趋势。依据负载金属、分子筛和还原剂不同,碳氢化合物选择性催化还原氮氧化物的活性位和反应中间体也各不相同,以丙烷为还原剂时Fe-ZSM-5分子筛是通过孤立的Fe2+与Fe3+之间的价态变化来脱除氮氧化物,而以甲烷为还原剂时Fe-AlPO-5分子筛则是以孤立的Fe3+和低聚态的FexOy物种为活性位。甲烷广泛存在于贫燃发动机尾气中,是脱除氮氧化物的较佳还原剂,而乙烯和丙烷等烃类由于其还原温度低于甲烷也得到较多研究。对其反应机理的研究有助于寻找影响反应的关键因素从而改善催化剂性能。根据所负载金属、分子筛和还原剂的特点,可优化出高效且环境友好的脱硝催化剂体系。

Selective catalytic reduction of NOx with hydrocarbons (CH-SCR-NOx) under oxygen-rich condition has been widely studied for its potential to clean up exhausts from lean-burn engines. Hydrocarbons are readily available reducing agents which can provide non-polluting processes. The research advances in reaction mechanism of selective catalytic reduction of NOx by hydrocarbons and the properties of copper-free metal (Fe, Co, In, Mn, Pd, etc.) catalysts have been reviewed in this article. The technical trends of copper-free metal supported zeolite are prospected. The supported metal, the zeolite and the reductant correspond to their own active sites. The active sites of selective catalytic reduction of NOx with propane on Fe-ZSM-5 zeolite are isolated Fe2+ and Fe3+, yet the active sites are isolated Fe3+ and oligonuclear FexOy on Fe-AlPO-5 zeolite with methane as reductant. Methane which is the preferred catalyst for removing nitrogen oxides is present in almost all combustion exhausts, while hydrocarbons such as ethene and propane have also been extensively studied due to their lower reduction temperature. The formation of key intermediates such as isocyanate and cyanide species is a necessary process during catalytic reaction. Study on reaction mechanism can help us to identify the key factors that influence the reaction and then optimize the catalytic processes. Efficient and environmentally friendly denitration catalyst system can be developed according to the specific characteristics of the supported metal, the zeolite and the reductant.

Contents
1 Introduction
2 CH-SCR-NOx reaction mechanism over copper-free metal supported zeolite
2.1 Reaction mechanism over iron supported zeolite
2.2 Reaction mechanism over Co-ZSM-5 zeolite
2.3 Reaction mechanism over Mn-ZSM-5 zeolite
3 Catalytic properties of copper-free metal supported zeolite with different reductant systems
3.1 CH4-SCR-NOx reaction
3.2 CyHz-SCR-NOx reaction (y≥2)
4 Conclusion and outlook

中图分类号: 

()

[1] 刘福东(Liu F D), 单文坡(Shan W P), 石晓燕(Shi X Y), 张长斌(Zhang C B), 贺泓(He H). 催化学报(Chinese Journal of Catalysis), 2011, 32(7): 1113—1128
[2] 刘福东(Liu F D), 单文坡(Shan W P), 石晓燕(Shi X Y), 贺泓(He H). 化学进展(Progress in Chemistry), 2012, 24(4): 445—455
[3] 孙亮(Sun L), 许悠佳(Xu Y J), 曹青青(Cao Q Q), 胡冰清(Hu B Q), 王超(Wang C), 荆国华(Jing G H). 化学进展(Progress in Chemistry), 2010, 22(10): 1882—1891
[4] Cant N W, Liu I O Y. Catal. Today, 2000, 63: 133—146
[5] Ingelsten H H, Palmqvist A, Skoglundh M. J. Phys. Chem. B, 2006, 110: 18392—18400
[6] Iwamoto M, Yahiro H, Yuu Y, Shundo S, Mizuno N. Shokubai, 1990, 32: 430—438
[7] Held W, Koenig A, Richter T, Puppe L. SAE Paper 900496, SP-810: 13—20
[8] Iwamoto M, Furukawa H, Mine Y, Uemura F, Mikuriya S, Kagawa S. J. Chem. Soc, Chem. Commun., 1986, 1272—1273
[9] Shelef M. Catal. Lett., 1992, 15: 305—310
[10] Hu J J, Ma Q, Ouyang L, Chen X, Gan F X. Appl. Mech. Mater., 2011, 71: 2806—2813
[11] Chen X, Zhu A, Au C T, Shi C. Catal. Lett., 2011, 141: 207—212
[12] Lombardo E A, Sill G A, D'Itri J L, Hall W K. J. Catal., 1998, 173: 440—449
[13] Chen X, Yang X, Zhu A, Au C T, Shi C. J. Mol. Catal. A: Chem., 2009, 312: 31—39
[14] Wang A, Liang D, Xu C, Sun X, Zhang T. Appl. Catal. B, 2001, 32: 205—212
[15] Fierro G, Moretti G, Ferraris G, Andreozzi G B. Appl. Catal. B, 2011, 102: 215—223
[16] Heijboer W M, Koningsberger D C, Weckhuysen B M, Groot F M F D. Catal. Today, 2005, 110: 228—238
[17] Bachari K, Millet J M M, Bonville P, Cherifi O, Figueras F. J. Catal., 2007, 249: 52—58
[18] Chen F, Do M H, Zheng W, Cheng D, Zhan X. Catal. Commun., 2008, 9: 2481—2484
[19] Cheng D, Chen F, Zhan X. Appl. Catal. A, 2012, 435/436: 27—31
[20] Smeets P J, Meng Q, Corthals S, Leeman H, Schoonheydt R A. Appl. Catal. B, 2008, 84: 505—513
[21] Iwasaki M, Shinjoh H. J. Catal., 2010, 273: 29—38
[22] Yang T T, Bi H T, Cheng X. Appl. Catal. B, 2011, 102: 163—171
[23] Lobree L, Hwang I C, Reimer J, Bell A. Catal. Lett., 1999, 63: 233—240
[24] Liu I, Cant N, Kögel M, Turek T. Catal. Lett., 1999, 63: 214—244
[25] Pieterse J A Z, Pirngruber G D, van Bokhoven J A, Booneveld S. Appl. Catal. B, 2007, 71: 16—22
[26] Cheng D, Zhao X, Chen F, Zhan X. Catal. Commun., 2009, 10: 1450—1453
[27] 赵晓旭(Zhao X X), 程党国(Cheng D G), 陈丰秋(Chen F Q), 詹晓力(Zhan X L). 催化学报(Chinese Journal of Catalysis), 2010, 31(1): 68—71
[28] Li Y, Armor J N. Appl. Catal. B, 1992, 1: L31—L40
[29] Montanari T, Marie O, Daturi M, Busca G. Appl. Catal. B, 2007, 71: 216—222
[30] Niu J, Yang X, Zhu A, Shi L, Sun Q, Xu Y, Shi C. Catal. Commun., 2006, 7: 297—301
[31] 牛金海(Niu J H), 朱爱民(Zhu A M), 杨学锋(Yang X F), 史玲玲(Shi L L), 徐勇(Xu Y), 王新葵(Wang X K), 石川(Shi C). 催化学报(Chinese Journal of Catalysis), 2006, 27(10): 837—839
[32] Chen X, Zhu A, Au C T, Yang X, Shi C. Catal. Lett., 2010, 135: 182—189
[33] Sadykov V A, Lunin V V, Matyshak V A, Paukshtis E A, Rozovskii A Y, Bulgakov N N, Ross J. Kinet. Catal., 2003, 44: 379—400
[34] Beloshapkin S A, Paukshtis E A, Sadykov V A. J. Mol. Catal. A: Chem., 2000, 158: 355—359
[35] Cowan A D, Cant N W, Haynes B S, Nelson P F. J. Catal., 1998, 176: 329—343
[36] Chen X, Yang X, Zhu A, Fan H, Wang X, Xin Q, Zhou X, Shi C. Catal. Commun., 2009, 10: 428—432
[37] Aylor A W, Lobree L J, Reimer J A, Bell A T. J. Catal., 1997, 170: 390—401
[38] Campa M C, Indovina V, Pietrogiacomi D. Appl. Catal. B, 2012, 111/112: 90—95
[39] Lónyi F, Solt H E, Valyon J, Boix A, Gutierrez L B. J. Mol. Catal. A: Chem., 2011, 345: 75—80
[40] Lónyi F, Solt H E, Valyon J, Boix A, Gutierrez L B. Appl. Catal. B, 2012, 117: 212—223
[41] Sowade T, Schmidt C, Schütze F W, Berndt H, Grünert W. J. Catal., 2003, 214: 100—112
[42] Sowade T, Liese T, Schmidt C, Schütze F W, Yu X, Berndt H, Grünert W. J. Catal., 2004, 225: 105—115
[43] 陈树伟(Chen S W), 闫晓亮(Yan X L), 陈佳琪(Chen J Q), 马静红(Ma J H), 李瑞丰(Li R F). 催化学报(Chinese Journal of Catalysis), 2010, 31(9): 1107—1114
[44] Mihaylov M, Hadjiivanov K, Panayotov D. Appl. Catal. B, 2004, 51: 33—42
[45] Li Z, Flytzani-Stephanopoulos M. Appl. Catal. A, 1997, 165: 15—34
[46] Ohtsuka H, Tabata T. Appl. Catal. B, 2000, 26: 275—284
[47] Ogura M, Kage S, Hayashi M, Matsukata M, Kikuchi E. Appl. Catal. B, 2000, 27: L213—L216
[48] Ren L L, Zhang T. Chinese Chem. Lett., 2010, 21: 674—677
[49] Nobukawa T, Yoshida M, Kameoka S, Ito S, Tomishige K, Kunimori K. J. Phys. Chem. B, 2004, 108: 4071—4079
[50] Cheng D, Zhu C, Zhao X, Chen F, Zhan X. React. Kinet. Mech. Cat., 2011, 103: 219—226
[51] Kameoka S, Kita K, Takeda T, Tanaka S, Ito S, Yuzaki K, Miyadera T, Kunimori K. Catal. Lett., 2000, 69: 169—173
[52] Kameoka S, Suzuki T, Yuzaki K, Takeda T, Tanaka S, Ito S, Miyadera T, Kunimori K. Chem. Commun., 2000, 745—746
[53] Kameoka S, Nobukawa T, Tanaka S, Ito S, Tomishige K, Kunimori K. Phys. Chem. Chem. Phys., 2003, 5: 3328—3333
[54] Janas J, Rojek W, Shishido T, Dzwigaj S. Appl. Catal. B, 2012, 123/124: 134—140
[55] Guzmán-Vargas A, Delahay G, Coq B, Lima E, Bosch P, Jumas J C. Catal. Today, 2005, 107: 94—99
[56] Decyk P, Kim D K, Woo S I. J. Catal., 2001, 203: 369—374
[57] Cheng X, Bi X T. Chem. Eng. J., 2012, 211/212: 453—462
[58] Heinrich F, Schmidt C, Löffler E, Menzel M, Grünert W. J. Catal., 2002, 212: 157—172
[59] De Lucas A, Valverde J L, Dorado F, Romero A, Asencio I. J. Mol. Catal. A: Chem., 2005, 225: 47—58
[60] Schuricht F, Reschetilowski W. Micropor. Mesopor. Mat., 2012, 164: 135—144
[61] Wang X, Zhang S, Yu Q, Yang H. Micropor. Mesopor. Mat., 2008, 109: 298—304
[62] Zhu R, Guo M, Ouyang F. Catal. Today, 2008, 139: 146—151
[63] Misono M, Hirao Y, Yokoyama C. Catal. Today, 1997, 38: 157—162

[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[3] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[4] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[5] 邵秀丽, 王驷骐, 张轩, 李军, 王宁宁, 王政, 袁忠勇. 纳米片层结构MFI分子筛的合成及应用[J]. 化学进展, 2022, 34(12): 2651-2666.
[6] 白文己, 石宇冰, 母伟花, 李江平, 于嘉玮. Cs2CO3辅助钯催化X—H (X=C、O、N、B)官能团化反应的理论计算研究[J]. 化学进展, 2022, 34(10): 2283-2301.
[7] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[8] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[9] 王贺礼, 朱美华, 梁丽, 吴婷, 张飞, 陈祥树. SSZ-13分子筛膜的制备方法及其气体分离[J]. 化学进展, 2020, 32(4): 423-433.
[10] 刘玥, 吴忆涵, 庞宏伟, 王祥学, 于淑君, 王祥科. 石墨相氮化碳材料在水环境污染物去除中的研究[J]. 化学进展, 2019, 31(6): 831-846.
[11] 倪秀秀, 丁鹤, 张景双, 曾周靓子, 白鹏, 郭翔海*. b轴取向MFI型分子筛膜二次生长合成策略及其应用[J]. 化学进展, 2018, 30(7): 976-988.
[12] 葛明, 李振路. 基于银系半导体材料的全固态Z型光催化体系[J]. 化学进展, 2017, 29(8): 846-858.
[13] 殷俞*, 张壮壮, 徐丹, 文志豪, 杨志峰, 袁爱华. 多孔材料基π络合吸附材料的合成及其应用[J]. 化学进展, 2017, 29(6): 628-636.
[14] 沈晓骏, 黄攀丽, 文甲龙, 孙润仓. 木质素氧化还原解聚研究现状[J]. 化学进展, 2017, 29(1): 162-178.
[15] 姚臻, 戴博恩, 于云飞, 曹堃. 巯基-环氧点击化学及其在高分子材料中的应用[J]. 化学进展, 2016, 28(7): 1062-1069.