English
新闻公告
More
化学进展 DOI: 10.7536/PC130413 前一篇   后一篇

• 综述与评论 •

多级孔分子筛的制备与催化应用

彭鹏1, 张占全1, 王有和1,2, Fazle Subhan1,3, 阎子峰*1   

  1. 1. 中国石油大学重质油国家重点实验室 中国石油催化重点实验室 青岛 266580;
    2. 中国石油大学(华东)理学院 青岛 266580;
    3. 阿普杜勒瓦利汉大学化学系, 巴基斯坦马尔丹
  • 收稿日期:2013-04-01 修回日期:2013-08-01 出版日期:2013-12-15 发布日期:2013-09-17
  • 通讯作者: 阎子峰 E-mail:zfyancat@upc.edu.cn
  • 基金资助:

    中国石油天然气股份有限公司重大科技专项(No.10-01A-05-01-08);国家自然科学基金委员会-中国石油天然气股份有限公司石油化工联合基金项目(No.U1362202);山东省自然科学基金项目(No.ZR2011BQ014);中央高校基本科研业务费专项资金(No.12CX04093A)和中国石油大学(华东)教育部自主创新项目(No.24720146047)资助

Hierarchical Molecular Sieves:Synthesis and Catalytic Applications

Peng Peng1, Zhang Zhanquan1, Wang Youhe1,2, Fazle Subhan1,3, Yan Zifeng*1   

  1. 1. State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, CNPC, China University of Petroleum, Qingdao 266580, China;
    2. School of Science, China University of Petroleum (East China), Qingdao 266580, China;
    3. Department of Chemistry, Abdul Wali Khan University Mardan, K.P.K, Pakistan
  • Received:2013-04-01 Revised:2013-08-01 Online:2013-12-15 Published:2013-09-17

分子筛研究的热点问题之一是如何减小微孔扩散阻力对传质带来的不利影响,以提高催化剂的利用效率。通过引入介孔,实现多级孔分子筛材料的设计是解决上述问题的一种有效方法。本文介绍了多级孔分子筛材料提高反应扩散效率的理论依据以及国内外多级孔分子筛材料制备方面的研究进展。主要包含“破坏性”方法(destructive methods)和“建设性”方法(constructive methods)的原理,从水热稳定性、酸性、操作性以及可放大性分析了各种合成方法的优势和不足。本文还介绍了多级孔分子筛在催化反应中的若干应用实例,重点介绍了多级孔材料在催化裂化和加氢反应中的应用进展,表明多级孔分子筛可以提高选择性以及转化率。开发适宜酸性以及水热稳定性的微孔-介孔分子筛,同时兼顾低成本、低污染以及易操作性的合成技术是将来研究的重点,同时应建立多级孔分子筛催化性能与结构的关系,加深对多级孔分子筛的认识。

Improving the diffusional performance of traditional microporous zeolites has become of interest to the fields of catalysis, adsorption and separation. The development of hierarchical molecular sieves has occurred to solve the aforementioned issues. This review includes the theoretical analyses about how to improve the efficiency and diffusional performance of molecular sieves during catalytic reactions by recent approaches to synthesize hierarchical molecular sieves. Different hierarchical molecular sieves synthesized via constructive and destructive methods are reported, with emphasis on their strengths and weaknesses, regarding hydrothermal stability, acidity, operational constraints and scalability. This review also summarizes recent catalytic applications, in particular, the applications in catalytic cracking and hydrogenation. It is shown that the incorporation of mesopores to traditional microporous zeolites can improve the activity and selectivity of catalytic cracking and hydrogenation. However, development of hierarchical molecular sieves needs to consider cost, production of high purity products while reducing the production of unwanted by-products, and to provide readily scalable materials. These hierarchical molecular sieves should be able to withstand acidic conditions and have high hydrothermal stability. Development of such materials with the properties described above and structure-property-function relationships of hierarchical molecular sieves should be emphasized in the future.

Contents
1 Introduction
1.1 Background
1.2 Theoretical analyses
2 Methods of preparation of hierarchical molecular sieves
2.1 Destructive strategies
2.2 Constructive strategies
3 Catalytic applications of hierarchical molecular sieves
3.1 Fluidized catalytic cracking
3.2 Hydrogenation reactions
4 Conclusion and outlook

中图分类号: 

()

[1] 高滋(Gao Z). 沸石催化与分离技术(Zeolite Catalysis and Separation Technology). 北京: 中国石化出版社(Beijing: China Petrochemical Press), 1999. 3—5
[2] 徐如人(Xu R R), 庞文琴(Pang W Q). 分子筛与多孔材料化学(Chemistry——Zeolites and Porous Materials). 北京: 科学出版社(Beijing: Science Press), 2004. 34—53
[3] Na K, Choi M, Ryoo R. Micropor. Mesopor. Mater., 2013, 166: 3—19
[4] Pérez-Ramírez J, Christensen C H, Egeblad K, Christensen C H, Groen J C. Chem. Soc. Rev., 2008, 37: 2530—2542
[5] Levenspiel O. Chemical Reaction Engineering. 3rd ed. NY: John Wiley & Sons, 1999. 381—385
[6] 甄开吉(Zhen K J), 王国甲(Wang G J), 毕颖丽(Bi Y L), 李荣生(Li R S), 阚秋斌(Kan Q B). 催化作用基础(An Introduction to Catalysis). 北京: 科学出版社(Beijing: Science Press), 2005. 89—93
[7] Corma A, Diaz-Cabañas M J, Martinez-Triguero J, Rey F, Rius J. Nature, 2002, 418: 514—517
[8] Corma A, Diaz-Cabañas M J, Rey F, Nicolopoulus S, Boulahya K. Chem. Commun., 2004, 1356—1357
[9] Corma A, Diaz-Cabañas M J, Jord J L, Martínez C, Moliner M. Nature, 2006, 443: 842—845
[10] Jiang J, Yu J, Corma A. Angew. Chem. In. Ed., 2010, 49: 3120—3145
[11] Chen L H, Li X Y, Rooke J C, Yang X Y, Tang Y, Zhang Y H, Xiao F S, Su B L. J. Mater. Chem., 2012, 22: 17381—17403
[12] Van Grieken R, Sotelo J, Menendez J, Melero J. Micropor. Mesopor. Mater., 2000, 39: 135—147
[13] Aguado J, Serrano D P, Escola J M, Rodríguez J M. Micropor. Mesopor. Mater., 2004, 75: 41—49
[14] 刘欣梅(Liu X M), 梁海宁(Liang H N), 李亮(Li L), 杨婷婷(Yang T T), 阎子峰(Yan Z F). 催化学报(Chinese Journal of Catalysis), 2010, 31(7): 833—838
[15] Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Nature, 1992, 359: 710—712
[16] ye G, Sjöblom J, Stöcker M. Adv. Colloid Interface Sci., 2001, 89/90: 439—466
[17] Zhao D, Feng J, Huo Q, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Science, 1998, 279: 548—552
[18] 张磊(Zhang L). 中国石油大学(华东)博士论文(Doctoral Dissertation of China University of Petroleum, East China), 2008
[19] Chal R, Gérardin C, Bulut M, van Donk S. ChemCatChem, 2011, 3: 67—81
[20] Chang X, He L, Liang H, Liu X, Yan Z. Catal. Today, 2010, 158: 198—204
[21] 昌兴文(Chang X W). 中国石油大学(华东)硕士论文(Master Dissertation of China University of Petroleum, East China), 2010
[22] 何丽凤(He L F). 中国石油大学(华东)硕士论文(Master Dissertation of China University of Petroleum, East China), 2012
[23] Janssen A H, Koster A J, de Jong K P. J. Phys. Chem. B, 2002, 106: 11905—11909
[24] Verboekend D, Pérez-Ramírez J. Catal. Sci. Technol., 2011, 1: 879—890
[25] Verboekend D, Pérez-Ramírez J. Chem. Eur. J., 2011, 17: 1137—1147
[26] Verboekend D, Mitchell S, Milina M, Groen J C, Pérez-Ramírez J. J. Phys. Chem. C, 2011, 115: 14193—14203
[27] Ogura M, Shinomiya S, Tateno J, Nara Y, Kikuchi E, Matsukata M. Chem. Lett., 2000, 29: 882—883
[28] Groen J C, Jansen J C, Moulijn J A, Pérez-Ramírez J. J. Phys. Chem. B, 2004, 108: 13062—13065
[29] Van Mao R L, Ramsaran A, Xiao S, Yaot J, Semme V. J. Mater. Chem., 1995, 5: 533—535
[30] Groen J, Moulijn J A, Pérez-Ramírez J. Ind. Eng. Chem. Res., 2007, 46: 4193—4201
[31] Holm M S, Hansen M K, Christensen C H. Eur. J. Inorg. Chem., 2009, 9: 1194—1198
[32] Abelló S, Bonilla A, Pérez-Ramírez J. Appl. Catal. A, 2009, 364: 191—198
[33] Vennestrøm P N R, Grill M, Kustova M, Egeblad K, Lundegaard L F, Joensen F, Christensen C H, Beato P. Catal. Today, 2011, 168: 71—79
[34] Pérez-Ramírez J, Verboekend D, Bonilla A, Abelló S. Adv. Funct. Mater., 2009, 19: 3972—3979
[35] Pérez-Ramírez J, Abelló S, Bonilla A, Groen J C. Adv. Funct. Mater., 2009, 19: 164—172
[36] Zhao L, Xu C, Gao S, Shen B. J. Mater. Sci., 2010, 45: 5406—5411
[37] 宋春敏(Song C M). 中国石油大学(华东)博士论文(Doctoral Dissertation of China University of Petroleum, East China), 2006
[38] Verboekend D, Chabaneix A M, Thomas K, Gilson J P, Pérez-Ramírez J. CrystEngComm., 2011, 13: 3408—3416
[39] Svelle S, Sommer L, Barbera K, Vennestrøm P N R, Olsbye U, Lillerud K P, Bordiga S, Pan Y H, Beato P. Catal. Today, 2011, 168: 38—47
[40] Groen J C, Moulijn J A, Pérez-Ramírez J. J. Mater. Chem., 2006, 16: 2121—2131
[41] Pérez-Ramírez J, Mitchell S, Verboekend D, Milina M, Michels N L, Krumeich F, Marti N, Erdmann M. ChemCatChem, 2011, 3: 1731—1734
[42] 陈芳(Chen F), 孟祥举(Meng X J), 肖丰收(Xiao F S). 科学通报(Chinese Science Bulletin), 2010, 55(29): 2785—2793
[43] Schmidt I, Madsen C, Jacobsen C J H. Inorg. Chem., 2000, 39: 2279—2283
[44] Yang Z X, Xia Y D, Mokaya R. Adv. Mater., 2004, 16: 727—732
[45] Tao Y, Kanoh H, Kaneko K. J. Am. Chem. Soc., 2003, 125: 6044—6045
[46] Kustova M Y, Hasselriis P, Christensen C H. Catal. Lett., 2004, 96: 205—211
[47] Wei X, Smirniotis P G. Micropor. Mesopor. Mater., 2006, 89: 170—178
[48] Egeblad K, Kustova M, Klitgaard S K, Zhu K, Christensen C H. Micropor. Mesopor. Mater., 2007, 101: 214—223
[49] Tao Y, Kanoh H, Kaneko K. J. Phys. Chem. B, 2003, 107: 10974—10976
[50] Tao Y, Kanoh H, Kaneko K. Langmuir, 2004, 21: 504—507
[51] Tao Y, Kanoh H, Abrams L, Kaneko K. Chem. Rev., 2006, 106: 896—910
[52] Wang L, Yin C, Shan Z, Liu S, Du Y, Xiao F S. Colloids Surf., A, 2009, 340: 126—130
[53] Meng X, Nawaz F, Xiao F S. Nano Today, 2009, 4: 292—301
[54] Sun C, Du J, Liu J, Yang Y, Ren N, Shen W, Xu H, Tang Y. Chem. Commun., 2010, 46: 2671—2673
[55] Zhu H, Liu Z, Wang Y, Kong D, Yuan X, Xie Z. Chem. Mater., 2007, 20: 1134—1139
[56] Ren L, Wu Q, Yang C, Zhu L, Li C, Zhang P, Zhang H, Meng X, Xiao F S. J. Am. Chem. Soc., 2012, 134: 15173—15176
[57] Zhu Y, Hua Z, Zhou J, Wang L, Zhao J, Gong Y, Wu W, Ruan M, Shi J. Chem. Eur. J., 2011, 17: 14618—14627
[58] Choi M, Cho H S, Srivastava R, Venkatesan C, Choi D H, Ryoo R. Nat. Mater., 2006, 5: 718—723
[59] Xiao F S, Wang L, Yin C, Lin K, Di Y, Li J, Xu R, Su D S, Schlögl R, Yokoi T, Tatsumi T. Angew. Chem. Int. Ed., 2006, 118: 3162—3165
[60] Liu S, Cao X, Li L, Li C, Ji Y, Xiao F S. Colloids Surf., A, 2008, 318: 269—274
[61] Wang L, Zhang Z, Yin C, Shan Z, Xiao F S. Micropor. Mesopor. Mater., 2010, 131: 58—67
[62] Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Nature, 2009, 461: 246—249
[63] Na K, Choi M, Park W, Sakamoto Y, Terasaki O, Ryoo R. J. Am. Chem. Soc., 2010, 132: 4169—4177
[64] Na K, Jo C, Kim J, Cho K, Jung J, Seo Y, Messinger R J, Chmelka B F, Ryoo R. Science, 2011, 333: 328—332
[65] Liu Y, Zhang W, Pinnavaia T J. J. Am. Chem. Soc., 2000, 122: 8791—8792
[66] Zhang Z, Han Y, Xiao F S, Qiu S, Zhu L, Wang R, Yu Y, Zhang Z, Zou B, Wang Y. J. Am. Chem. Soc., 2001, 123: 5014—5021
[67] 韩宇(Han Y), 肖丰收(Xiao F S). 催化学报(Chinese Journal of Catalysis), 2003, 24: 149—158
[68] Ivanova I I, Knyazeva E E. Chem. Soc. Rev., 2013, 42: 3671—3688
[69] García-Martínez J, Johnson M, Valla J, Li K, Ying J Y. Catal. Sci. Technol., 2012, 2: 987—994
[70] Song C M, Jiang J, Yan Z F. J. Porous Mater., 2008, 15: 205—211
[71] Song C M, Yan Z F. Asia-Pac. J. Chem. Eng., 2008, 3: 275—283
[72] Zhang Z, Yan Z. J. Porous Mater., 2013, 20: 309—317
[73] García-Martínez J, Li K, Krishnaiah G. Chem. Commun., 2012, 48: 11841—11843
[74] Christensen C H, Johannsen K, Schmidt I, Christensen C H. J. Am. Chem. Soc., 2003, 125: 13370—13371
[75] van laak A N C, Gosselink R W, Sagala S L, Meeldijk J D, de Jongh P E, de Jong K P. Appl. Catal., A, 2010, 382: 65—72
[76] Sun Y, Prins R. Appl. Catal. A, 2008, 336: 11—16
[77] Bjørgen M, Joensen F, Spangsberg Holm M, Olsbye U, Lillerud K P, Svelle S. Appl. Catal., A, 2008, 345: 43—50
[78] Mei C, Wen P, Liu Z, Liu H, Wang Y, Yang W, Xie Z, Hua W, Gao Z. J. Catal., 2008, 258: 243—249
[79] Li Y, Liu S, Zhang Z, Xie S, Zhu X, Xu L. Appl. Catal. A, 2008, 338: 100—113
[80] Chao P H, Tsai S T, Chang S L, Wang I, Tsai T C. Top. Catal., 2010, 53: 231—237
[81] Mokrzycki ?, Sulikowski B, Olejniczak Z. Catal. Lett., 2009, 127: 296—303
[82] Bari Siddiqui M, Aitani A, Saeed M, Al-Khattaf S. Top. Catal., 2010, 53: 1387—1393
[83] Zhu H, Liu Z, Kong D, Wang Y, Xie Z. J. Phy. Chem. C, 2008, 112: 17257—17264
[84] Park D H, Kim S S, Wang H, Pinnavaia T J, Papapetrou M C, Lappas A A, Triantafyllidis K S. Angew. Chem. Int. Ed., 2009, 48: 7645—7648
[85] Shetti V N, Kim J, Srivastava R, Choi M, Ryoo R. J. Catal., 2008, 254: 296—303
[86] Palkovits R, Schmidt W, Ilhan Y, Erdem-?natalar A, Schüth F. Micropor. Mesopor. Mater., 2009, 117: 228—232
[87] Tang T, Yin C, Wang L, Ji Y, Xiao F S. J. Catal., 2008, 257: 125—133
[88] Tang T, Yin C, Wang L, Ji Y, Xiao F S. J. Catal., 2007, 249: 111—115
[89] Zhang Z, Xiao J, Dai L, Wang Y, Wang D, Liu X, Yan Z. J. Porous Mater., 2012, 19: 473—479
[90] Holm M S, Taarning E, Egeblad K, Christensen C H. Catal. Today, 2011, 168: 3—16

[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[3] 施剑林, 华子乐. 无机纳米与多孔材料合成中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1060-1075.
[4] 潘迪, 刘鹏, 张宏斌, 唐颐. 沸石的连续流动相合成[J]. 化学进展, 2020, 32(7): 873-881.
[5] 黄威嫔, 任科峰, 计剑. 聚合物材料表面微结构调控新策略[J]. 化学进展, 2020, 32(10): 1494-1503.
[6] 刘文巧, 李臻, 夏春谷. 酸功能化离子液体固相催化材料的制备及应用[J]. 化学进展, 2018, 30(8): 1143-1160.
[7] 池滨, 侯三英, 刘广智, 廖世军*. 高性能高功率密度质子交换膜燃料电池膜电极[J]. 化学进展, 2018, 30(2/3): 243-251.
[8] 葛明, 李振路. 基于银系半导体材料的全固态Z型光催化体系[J]. 化学进展, 2017, 29(8): 846-858.
[9] 王鹏远, 郭昌胜, 高建峰, 徐建. 石墨相氮化碳(g-C3N4)与Bi系复合光催化材料的制备及在环境中的应用[J]. 化学进展, 2017, 29(2/3): 241-251.
[10] 赵新红, 高向平, 郝志鑫, 张晓晓. 多级孔磷酸铝分子筛的合成、表征及催化应用[J]. 化学进展, 2016, 28(5): 686-696.
[11] 薛丽君, 张迪, 魏杰, 刘欣梅. 催化剂的孔道限域效应[J]. 化学进展, 2016, 28(4): 450-458.
[12] 范功端, 林茹晶, 苏昭越, 许仁星. 沸石咪唑酯骨架材料用于水中污染物的去除[J]. 化学进展, 2016, 28(12): 1753-1761.
[13] 谢利娟, 石晓燕, 刘福东, 阮文权. 菱沸石在柴油车尾气NOx催化净化中的应用[J]. 化学进展, 2016, 28(12): 1860-1869.
[14] 王亚军, 李泽雪, 于海洋, 冯长根. 亚稳态分子间复合物反应机理研究[J]. 化学进展, 2016, 28(11): 1689-1704.
[15] 闵媛媛, 尚蕴山, 宋宇, 李国栋, 巩雁军. 纳米薄层分子筛的合成与应用[J]. 化学进展, 2015, 27(8): 1002-1013.
阅读次数
全文


摘要

多级孔分子筛的制备与催化应用