English
新闻公告
More
化学进展 2013, Vol. 25 Issue (11): 1858-1866 DOI: 10.7536/PC130403 前一篇   后一篇

• 综述与评论 •

过渡金属氧化物反蛋白石及其在光(电)化学中应用

张辉*, 徐骁龙   

  1. 北京交通大学理学院 北京 100044
  • 收稿日期:2013-04-01 修回日期:2013-08-01 出版日期:2013-11-15 发布日期:2013-09-12
  • 通讯作者: 张辉 E-mail:hzhang1@bjtu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 50974006, 51172007)和北京市自然科学基金项目(No. 2102004)资助

Transition Metal Oxides Inverse Opals and Their Applications in Photo(electro)chemical Processes

Zhang Hui*, Xu Xiaolong   

  1. School of Science, Beijing Jiaotong University, Beijing 100044, China
  • Received:2013-04-01 Revised:2013-08-01 Online:2013-11-15 Published:2013-09-12

反蛋白石结构是优化的光子晶体(photonic crystals),利用其光带隙效应和三维有序大孔(three-dimensional ordered macropores, 3DOM)结构,其应用目前已扩展到光伏太阳能电池、染料敏化太阳能电池(dye-sensitized solar cells, DSSCs)、光催化等光(电)化学领域,大大提高了这些过程中的太阳光利用效率。过渡金属氧化物(transition metal oxides, TMOs)是高折射率的半导体材料,在可见光区吸收系数小,很适合用于制备高性能光子晶体。TMOs反蛋白石的制备方法,如:溶胶-凝胶法、金属盐热解法和液相沉积法,电化学沉积法,电泳法,化学气相沉积法(CVD),原子层沉积法(ALD)等,各有其独特的优点也有其本身固有的缺陷。本文对TMOs反蛋白石材料,从制备、性能及其在DSSCs、光催化等过程中应用的角度,对其研究进展进行综述。

Inverse opals structures, which are also called as 3DOM materials in the catalysis science community, are the optimized photonic crystals. Since inverse opals photonic crystals have two important features, photonic band gaps and high specific surface areas, currently their applications have been extended to photo(electro)chemical processes, such as photovoltaic solar cells, DSSCs, photocatalyses, etc.The usages of inverse opals have largely improved the efficiencies of both the utilities of solar energies and the catalyses in above-metioned processes. Transition metal oxides (TMOs) are the oxide semiconductor materials with high refractive index and little light absorptions in the visible wavelength range. Therefore they are suitable candidate materials for preparing high-quality inverse opals photonic crystals. A variety of preparation methods of TMOs inverse opals, for instance, sol-gel, metal salts pyrolysis, liquid phase deposition, electrochemical deposition, electrophoresis, chemical vapor deposition (CVD), atomic layer deposition (ALD) and so on, have been developed. These synthesis processes have their unique advantages and also inherent disadvantages. No matter which technique is employed, obtaining an inverse opal material with big area, single crystal structure, and controlled layer number, would be a great challenge. This paper, from the views of preparations, properties and applications in DSSCs and photocatalyses, reviews the progress in the TMOs inverse opals.

Contents
1 Introduction
2 Characteristics of TMOs
3 Preparations of TMOs inverse opals
3.1 A brief introduction to preparation process
3.2 Liquid phase method
3.3 Vapor phase method
4 Applications of TMOs inverse opals in photo(electro)chemical processes
4.1 DSSCs
4.2 Photocatalytic degradation
4.3 Photocatalytic water splitting
5 Works of authors group in this field
6 Summary and outlook

中图分类号: 

()

[1] Yablonovitch E. Phys. Rev. Lett., 1987, 58(20): 2059—2062
[2] John S. Phys. Rev. Lett., 1987, 58(23): 2486—2489
[3] Kolle M, Zheng B, Gibbons N, Baumberg J J, Steiner U. Opt. Express, 2010, 18(5): 4356—4364
[4] Zhang Q, Li K H, Choi H W. IEEE Photonic. Tech. L., 2012, 24(18): 1642—1645
[5] Ferry J, Pleumeekers J L, Mathur A, Dentai A G, Evans P W. Photonics Spectra, 2006, 40(3): 78—82
[6] Liu G Q, Wang Z S, Liao Y B, Chen Y, Hu H H, Liu Z M. J. Opt. A: Pure Appl. Opt., 2009, 11(8): 5104—5111
[7] 叶卫民(Ye W M). 光子晶体导论(Introduction to Photonic Crystal). 北京: 科学出版社(Beijing: Scientific Press), 2010. 2—5
[8] Zhang J H, Sun Z H, Yang B. Curr. Opin. Colloid Interface Sci., 2009, 14(2): 103—114
[9] Zhang J N, Wang M Z, Ge X W, Wu M Y, Wu Q Y, Yang J J, Wang M Y, Jin Z L, Liu N N. J. Colloid Interface Sci., 2011, 353(1): 16—21
[10] Hatton B, Mishchenko L, Davis S, Sandhage K H, Aizenberg J. Proc. Natl. Acad. Sci. U. S. A., 2010, 107(23): 10354—10359
[11] Waterhouse G I N, Metson J B, Idriss H, Sun-Waterhouse D. Chem. Mater., 2008, 20(3): 1183—1190
[12] Meng S G, Li D Z, Zheng X Z, Wang J X, Chen J, Fang J L, Shao Y, Fu X Z. J. Mater. Chem. A, 2013, 1(8): 2744—2747
[13] Qu X, Yang H K, Moon B K, Choi B C, Jeong J H, Kim K H. J. Phys. Chem. C, 2010, 114(47): 19891—19894
[14] Huang Y J, Lai C H, Wu P W, Chen L Y. Mater. Lett., 2009, 63(27): 2393—2395
[15] Yuan J, Dai H, Zhang L, Deng J, Liu Y, Zhang H, Jiang H Y, HeH. Catal. Today, 2011, 175(1): 209—215
[16] Teng Y, Fu Y, Xu L, Lin B, Wang Z, Xu Z, Jin L T, ZhangW. J. Phys. Chem. B, 2012, 116(36): 11180—11186
[17] Liu Y J, Cai Z, Leong E S P, Zhao X S, Teng J H. J. Mater. Chem., 2012, 22(15): 7609—7613
[18] Kang C, Kim E, Baek H, Hwang K, Kwak D, Kang Y, Thomas E L. J. Am. Chem. Soc., 2009, 131(22): 7538—7539
[19] Khokhar A Z, de La Rue R M, Treble B M, McComb D W, Johnson N P. Micro. Nano. Lett., 2008, 3(1): 1—6
[20] Li Y J, Xie K, Xu J, Du P P. Appl. Phys. A, 2010, 99(1): 117—123
[21] Chainani A, Yamamoto A, Matsunami M, Eguchi R, Taguchi M, Takata Y, Takagi H, Shin S, Nishino Y, Yabashi M, Tamasaku K, Ishikawa T. Phys. Rev. B, 2013, 87(4): art. no. 045108
[22] Chen D, Huang F, Cheng Y B, Caruso R A. Adv. Mater., 2009, 21(21): 2206—2210
[23] Liu Y, Jennings J R, Zakeeruddin S M, Grtzel M, Wang Q. J. Amer. Chem. Soc., 2013, 135(10): 3939—3952
[24] Park B W, Shen Q, Ogomi Y, Pandey S S, Toyoda T, Hayase S. J. Solid State Sci. Technol., 2012, 2(1): Q6—Q11
[25] Yella A, Lee H W, Tsao H N, Yi C Y, Chandiran A K, Nazeeruddin M K, Diau E W, Yeh C Y, Zakeeruddin S M, Grtzel M. Science, 2011, 334(6056): 629—634
[26] Bendall J S, Etgar L, Tan S C, Cai N, Wang P, Zakeeruddin S M, Grätzel M, Welland M E. Energy Environ. Sci., 2011, 4(8): 2903—2908
[27] Magne C, Moehl T, Urien M, Grätzel M, Pauporté T. J. Mater. Chem. A, 2013, 1(6): 2079—2088
[28] Saito M, Fujihara S. Energ. Environ. Sci., 2008, 1(2): 280—283
[29] Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H. Chem. Rev., 2010, 110(11): 6595—6663
[30] Kim S H, Oh G Y, Kim D G, Ki H C, Kim T U, Kim H J. Opt. Quant. Electron., 2013, 45(7): 755—760
[31] Schauries D, Ney V, Nayak S K, Entel P, Guda A A, Soldatov A V, Wilhelm F, Rogalev A, Kummer K, Yakhou F, Ney A. Phys. Rev. B, 2013, 87(12): art. no. 125206
[32] Wu W, Liao L, Zhang S, Zhou J, Xiao X, Ren F, Sun L L, Dai Z G, Jiang C Z. Nanoscale, 2013, 5(12): 5628—5636
[33] You H, Liu R, Liang C, Yang S, Wang F, Lu X, Ding B J. J. Mater. Chem. A, 2013, 1(12): 4097—4104
[34] Milton L. Appl. Opt., 1965, 4(8): 1032—1033
[35] Penschke C, Paier J, Sauer J. J. Phys. Chem. C, 2013, 117(10): 5274-5285
[36] Králik B, Chang E K, Louie S G. Phys. Rev. B, 1998, 57(12): 7027—7036
[37] Wang X J, Zhang L D, Zhang J P, He G, Liu M, Zhu L Q. Mater. Lett., 2008, 62(26): 4235—4237
[38] Faust B C, Hoffmann M R. Environ. Sci. Technol., 1986, 20(9): 943—948
[39] Park J, Kim D, Lee C, Kim D K. Bull. Korean Chem. Soc., 1999, 20(9): 1005—1009
[40] Sharifi P, Eckerlebe H, Marlow F. Phys. Chem. Chem. Phys., 2012, 14(29): 10324—10331
[41] Zhao J Q, Wan P, Xiang J, Tong T, Dong L, Gao Z N, Shen X Y, Tong H. Microporous Mesoporous Mater., 2011, 138(1/3): 200—206
[42] Ko Y G, Shin D H, Lee G S, Choi U S. Colloids Surf. A, 2011, 385(1/3): 188-194
[43] Huang Y J, Lai C H, Wu P W. Electrochem. Solid-State Lett., 2008, 11(12): P20—P22
[44] Zhang H, Xu X L, Li F, Jin B B, Zhao S L. Key Eng. Mater., 2013, 544: 209—212
[45] Marlow F, Sharifi P, Brinkmann R, Mendive C. Angew. Chem. Int. Ed., 2009, 48(34): 6212—6233
[46] Li S, Zhao D, Zheng J, Wan Y, Zhao X S, Zhao C C, Liu Y, Liu F, Lu L, Wang Y Q. Mater. Res. Bull., 2010, 45(9): 1069—1074
[47] Guan G. Int. J. Hydrogen Energy, 2008, 33(2): 797—801
[48] Yang Z, Yan D, Zhu K, Song Z G, Yu X, Zhou D C, Yin Z Y, Qiu J B. Mater. Lett., 2011, 65(8): 1245—1247
[49] Qu X S, Yang H K, Moon B K, Choi B C, Jeong J H. Jpn. J. Appl. Phys., 2011, 50: art. no. 1AK06
[50] Zhao J P, Li Y, Xin W H, Li X. J. Solid State Chem., 2008, 181(2): 239—244
[51] Lin Y G, Hsu Y K, Chen Y C, Chen L C, Chen S Y, Chen K H. Nanoscale, 2012, 4: 6515—6519
[52] Han D Z, Li X, Zhang L, Wang Y H, Yan Z F, Liu S M. Microporous Mesoporous Mater., 2012, 158: 1—6
[53] Li Z H, Zhao T P, Zhan X Y, Gao D S, Xiao Q Z, Lei G T. Electrochim. Acta, 2010, 55(15): 4594—4598
[54] Cui W, Liu H, Wang C, Xia Y Y. Electrochem. Commun., 2008, 10(10): 1587—1589
[55] Li S, Zheng J, Zhao Y, Liu Y. J. Porous Mater., 2008, 16(5): 553—556
[56] Li S, Zheng J, Zhao Y, Liu Y. J. Appl. Polym. Sci., 2008, 107(6): 3903—3908
[57] Lee S H, Abrams N M, Hoertz P G, Barber G D, Halaoui L I, Mallouk T E. J. Phys. Chem. B, 2008, 112(46): 14415—144121
[58] Wang A, Chen S L, Dong P, Zhou Z. Synth. Met., 2011, 161(5/6): 504—507
[59] Orilall M C, Abrams N M, Lee J, di Salvo F J, Wiesner U. J. Am. Chem. Soc., 2008, 130(28): 8882—8883
[60] Shi X J, Zhang K, Shin K, Moon J H, Lee T W, Park J H. Phys. Chem. Chem. Phys., 2013, 15: 11717—11722
[61] Chung Y W, Leu I C, Lee J H, Hon M H. Electrochim. Acta, 2009, 54(13): 3677—3682
[62] Chung Y W, Leu I C, Lee J H, Hon M H. J. Electrochem. Soc., 2009, 156(6): E91—E95
[63] Juárez B H, García P D, Golmayo D, Blanco A, López C. Adv. Mater., 2005, 17(22): 2761—2765
[64] Luo J S, Karuturi S K, Liu L J, Su L T, Tok A Y, Fan H J. Sci. Rep., 2012, 2(451): 1—6
[65] Li H R, Tang Q, Cai F Y, Hu X B, Lu H H, Yan Y, Hong W, Zhao B Y. Sol. Energy, 2012, 86(11): 3430—3437
[66] Liu W J, Zou B, Zhao J, Cui H N. Thin Solid Films, 2010, 518(17): 4923—4927
[67] Liu S. Master Dissertation of Queensland University of Technology, 2010
[68] 张辉(Zhang H), 赵晓峰(Zhao X F), 唐清(Tang Q), 李文超(Li W C). 中国粉体技术(China Powder Science and Technology), 2003, 9(1): 18—20
[69] 张辉(Zhang H), 赵晓峰(Zhao X F), 唐清(Tang Q), 李文超(Li W C). 过程工程学报(The Chinese Journal of Process Engineering), 2002, 2(6): 544—546
[70] Zhang H, Wang X D, Zhao X F, Li W C, Tang Q. Prog. Nat. Sci., 2003, 13(9): 717—720
[71] Zhang H, Duan R G, Li F, Tang Q, Li W C. Mater. Design, 2007, 28(3): 1045—1049
[72] Wang D D, Wang Y S, Zhang H, Deng L E, Zhang C X, Han X. J. Lumin., 2007, 122/123: 951—954
[73] 徐骁龙(Xu X L), 张辉(Zhang H), 刘盛楠(Liu S N), 李钒(Li F), 万金秀(Wan J X), 杨辉煌(Yang H H). 人工晶体学报(Journal of Synthetic Crystals), 2013, 42: 461—465
[74] 徐骁龙(Xu X L), 张辉(Zhang H), 刘盛楠(Liu S N), 李钒(Li F), 万金秀(Wan J X). 硅酸盐学报(Journal of the Chinese Ceramic Society), 2013, 41: 136—140
[75] 张辉(Zhang H), 万金秀(Wan J X). ZL201210058430.X, 2012

[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[3] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[4] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[5] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[6] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[7] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[8] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[9] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[10] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[11] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[12] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[13] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[14] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[15] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.