English
新闻公告
More
化学进展 2013, Vol. 25 Issue (11): 1928-1941 DOI: 10.7536/PC130212 前一篇   后一篇

• 综述与评论 •

荧光有机小分子纳米材料的合成及其应用

龚洁, 沈清明*, 范曲立*, 黄维*   

  1. 南京邮电大学信息材料与纳米技术研究院 有机电子与信息显示国家重点实验室培育基地 南京 210023
  • 收稿日期:2013-02-01 修回日期:2013-03-01 出版日期:2013-11-15 发布日期:2013-09-12
  • 通讯作者: 沈清明, 范曲立, 黄维 E-mail:iamqmshen@njupt.edu.cn;iamqlfan@njupt.edu.cn;wei-huang@njupt.edu.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No.2009CB930600, 2012CB723402)、国家自然科学基金项目(No. 21222404, 51173080, 21104033, 21105050)、教育部新世纪优秀人才项目(No. NCET-10-0179)、高等学校博士点专项科研基金项目(No.20093223110003, 20113223120004)和江苏省高校自然科学基金项目(11KJB150011)资助

Fluorescent Organic Small Molecular Nanomaterials

Gong Jie, Shen Qingming*, Fan Quli*, Huang Wei*   

  1. Key Lab of Organic Electronics & Information Displays, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
  • Received:2013-02-01 Revised:2013-03-01 Online:2013-11-15 Published:2013-09-12

由于荧光有机小分子纳米材料在有机电子和生物传感方面具有良好的潜在应用,已逐渐成为有机纳米材料研究的一个热点。本文综述了荧光有机小分子纳米材料的最新研究进展,重点介绍了制备荧光有机小分子纳米材料的多种合成方法,这些方法主要包括再沉淀法、离子缔合法、自组装法、微乳液法、激光烧蚀法、吸附剂辅助物理气相沉积法。本文简要概括了这几种合成方法的优缺点,另外还比较了不同合成方法所制备材料的光电物理性质,并对其在有机光电器件、化学生物传感和生物成像等领域的应用进行了阐述。

Fluorescent organic small molecular nanomaterials, due to their excellence performance in organic electronics and biological sensing, have attracted more and more attention in the fields of chemistry, materials, biology, and so on. In the past years, significant advances in both the experimental and theoretical fronts have been made for the nanomaterials and nanotechnology. However, compared with fluorescent inorganic quantum dots or polymer nanoparticles, fluorescent organic nanoparticles(FONs) which based on π-conjugated systems, are becoming more and more important to bio-imaging, drug carriers and optoelectronic, since the wider variability and flexibility in materials synthesis and nanoparticles preparation of organic molecules. This paper systematically introduces the recent research developments of the design, synthesis, photophysical properties and application of fluorescent organic small molecular nanomaterials. The highlights of this paper are the preparation methods of fluorescent organic small molecular nanomaterials, such as reprecipitation method, ion association method, self-assembly method, micro-emulsion method, laser fabrication method, adsorbent assisted physical vapor deposition method. We briefly conclude the advantages and disadvantages of the above-mentioned synthetic methods. In addition, we also compare the properties of the fluorescent organic small molecular nanomaterials synthesized by different method, and give a brief introduction to their application on organic optoelectronic devices, chemical and biological sensing, bio-imaging and other fields.

Contents
1 Introduction
2 Preparation methods of fluorescent organic small molecular nanomaterials
2.1 Reprecipitation method
2.2 Ion association method
2.3 Self-assembly method
2.4 Micro-emulsion method
2.5 Laser fabrication method
2.6 Adsorbent assisted physical vapor deposition method
3 Conclusions and outlook

中图分类号: 

()

[1] Denkov N D, Velev O D, Kralchevsky P A, Ivanov I B, Yoshimura H, Nagayama K. Nature, 1993, 361: 26—26
[2] Hayward R C, Saville D A, Aksay I A. Nature, 2000, 404: 56—58
[3] Mao C, Sun W, Shen Z, Seeman N C. Nature, 1999, 397: 144—146
[4] Yan H, Zhang X, Shen Z, Seeman N C. Nature, 2002, 415: 62—65
[5] Kasai H, Nalwa H S, Oikawa H, Okada S, Matsuda H, Minami N, Kakuta A, Ono K, Mukoh A, Nakanishi H. Jpn. J. Appl. Phys., 1992, 31: L1132—L1134
[6] Zhao Y S, Fu H B, Peng A D, Ma Y, Xiao D B, Yao J N. Adv. Mater., 2008, 20: 2859—2876
[7] Zang L, Che Y, Moore J S. Acc. Chem. Res., 2008, 41: 1596—1608
[8] Zhao Y S, Fu H B, Peng A D, Ma Y, Liao Q, Yao J N. Acc. Chem. Res., 2010, 43: 409—418
[9] Lim S J, An B K, Jung S D, Chung M A, Park S Y. Angew. Chem. Int. Ed., 2004, 43: 6346—6350
[10] Peng A D, Xiao D B, Ma Y, Yang W S, Yao J N. Adv. Mater., 2005, 17: 2070—2073
[11] Wang F, Han M Y, Mya K Y, Wang Y B, Lai Y H. J. Am. Chem. Soc., 2005, 127: 10350—10355
[12] Sun Y Y, Liao J H, Fan J M, Chou P T, Shen C H, Hsu C W, Chen L C. Org. Lett., 2006, 8: 3713—3716
[13] Mukamel S, Chemla D S. Chem. Phys., 1996, 210: R7—R8
[14] Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos A P. Science, 1998, 281: 2013—2016
[15] Michalet X, Pinaud F, Lacoste T D, Dahan M, Bruchez M P, Alivisatos A P, Weiss S. Single Mol., 2001, 2: 261—276
[16] Hagfeldt A, Gratzel M. Chem. Rev., 1995, 95: 49—68
[17] Schlamp M C, Peng X, Alivisatos A P. J. Appl. Phys., 1997, 82: 5837—5842
[18] Wohltjen H, Snow A W. Anal. Chem., 1998, 70: 2856—2859
[19] Shipway A N, Katz E, Willner I. Chem. Phys. Chem., 2000, 1: 18—52
[20] Kasai H, Kanbara H, Iida R, Okasa S, Matsuda H, Oikwa H, Nakanishi H. Jpn. J. Appl. Phys., 1995, 34: L1208—L1210
[21] Kasai H, Kanbara H, Iida R, Okasa S, Matsuda H, Oikwa H, Nakanishi H. Jpn. J. Appl. Phys., 1996, 35: L221
[22] Kasai H, Kanbara H, Yoshikawa Y, Okada S, Oikawa H, Watanabe A, Itoh O, Nakanishi H. Chem. Lett., 1997, 26: 1181—1182
[23] Fu H B, Ji X H, Zhang X H, Wu S K, Yao J N. J. Colloid Interface. Sci., 1999, 220: 177—180
[24] Fu H B, Ji X H, Yao J N. Chem. Lett., 1999, 28: 967—968
[25] An B K, Kwon S K, Jung S D, Park S Y. J. Am. Chem. Soc., 2002, 124: 14410—14415
[26] Sun Y Y, Liao J H, Fang J M, Chou P T, Shen C H, Hsu C W. Org. Lett., 2006, 8: 3713—3716
[27] Palayangoda S S, Cai X, Adhikari R M, Neckers D C. Org. Lett., 2008, 10: 281—284
[28] Panthi K, Adhikari R M, Kinstle T H. J. Phys. Chem. A, 2010, 114: 4550—4557
[29] Li H B, Yan H J. J. Phys. Chem. C, 2009, 113: 7526—7530
[30] Zhang B, Diao W, Bi C, Sun J, Han G X, Sheng L, Yin G, Pu L. J. Fluoresc., 2012, 22: 1—7
[31] Das S, Bwambok D, El-Zahab B, Monk J, de Rooy S L, Challa S, Li M, Hung F R, Baker G A, Warner I M. Langmuir, 2010, 26(15): 12867—12876
[32] Das S, de Rooy S L, Jordan A N, Chandler L, Negulescu I I, El-Zahab B, Warner I M. Langmuir, 2012, 28: 757—765
[33] Ravi M A, Bipin K S, Sujeewa S P, Douglas C N. Langmuir, 2009, 25: 2402—2406
[34] Jana A, Devi K S P, Maiti T K, Singh N D P. J. Am. Chem. Soc., 2012, 134(18): 7656—7659
[35] Breton M, Prevel G, Audibert J F, Pansu R, Tauc P, Pioufle B L, Francais O, Fresnais J, Berret J F, Ishow E. Phys. Chem. Chem. Phys., 2011, 13: 13268—13276
[36] Kang L T, Chen Y, Xiao D B, Peng A D, Shen F G, Kuang X, Fu H B, Yao J N. Chem. Commun., 2007, 2695—2697
[37] Petkau K, Kaeser A, Fischer I, Brunsveld L, Schenning A P H J. J. Am. Chem. Soc., 2011, 133: 17063—17071
[38] Stevens A L, Kaeser A, Schenning A P H J, Herz L M. ACS Nano, 2012, 6: 4777—4787
[39] Yao H, Ou Z M, Kimura K. Chem. Lett., 2005, 34: 1108—1109
[40] Yao H, Yamashita M, Kimura K. Langmuir, 2009, 25: 1131—1137
[41] Ou Z M, Yao H, Kimura K. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 189: 7—14
[42] Olive A G L, del Guerzo A, Schofer C, Belin C, Raffy G, Giansante C. J. Phys. Chem. C, 2010, 114: 10410—10416
[43] Lin H H, Su S Y, Chang C C. Org. Biomol. Chem., 2009, 7: 2036—2039
[44] Lin H H, Chan Y C, Chen J W, Chang C C. J. Mater. Chem., 2011, 21: 3170—3177
[45] Chang C C, Hsieh M C, Lin J C, Chang T C. Biomaterials, 2012, 33: 897—906
[46] Li X L, Li Z G, Jing Y Q, Bing B C, Li B. J. Colloid Interface Sci., 2012, 375: 41—49
[47] Gonda K, Miyashita M, Watanabe M, Takahashi Y, Goda H, Okada H, Nakano Y, Tada H, Amari M, Ohuchi N. Biochemical and Biophysical Research Communications, 2012, 426: 409—414
[48] Kaeser A, Fischer I, Abbel R, Besenius P, Dasgupta D, Gillisen M A J, Portale G, Stevens A L, Herz L M, Schenning A P H J. ACS Nano, 2013, 7: 408—416
[49] Balan B, Vijayakumar C, Ogi S, Takeuchi M. J. Mater. Chem., 2012, 22: 11224—11234
[50] Ke D M, Zhan C L, Xu S P, Ding X L, Peng A D, Sun J, He S G, Alexander D Q L, Yao J N. J. Am. Chem. Soc., 2011, 133: 11022—11025
[51] Ke D M, Zhan C L, Alexander D Q L, Yao J N. Angew. Chem., 2011, 123: 3799—3803
[52] Zhang C, Zou C L, Yan Y L, Hao R, Sun F W, Han Z F, Zhao Y S, Yao J N. J. Am. Chem. Soc., 2011, 133: 7276—7279
[53] Xu Z Z, Liao Q, Shi Q, Zhang H L, Yao J N, Fu H B. Adv. Mater., 2012, 24: 216—220
[54] Chen W, Peng Q, Li Y D. Adv. Mater., 2008, 20: 2747—2750
[55] Lei Y L, Liao Q, Fu H B, Yao J N. J. Am. Chem. Soc., 2010, 132: 1742—1743
[56] Zhang C, Zheng Y J, Zhao Y S, Yao J N. Chem. Commun., 2010, 46: 4959—4961
[57] Yoshiaki T, Tsuyoshi A, Hiroshi M. J. Phys. Chem. A, 2002, 106: 2135—2139
[58] Li B, Kawakami T, Hiramatsu M. Applied Surface Science, 2003, 210: 171—176
[59] Asahi T, Yuyama K, Sugiyama T, Masuhara H. Rev. Laser Eng., 2005, 1: 41—46
[60] Zhao Y S, Peng A D, Fu H B, Ma Y, Yao J N. Adv. Mater., 2008, 20: 1661—1665
[61] Zhao Y S, Di C A, Yang W S, Yu G, Liu Y Q, Yao J N. Adv. Funct. Mater., 2006, 16: 1985—1991
[62] Zhao Y S, Fu H B, Hu F Q, Peng A D, Yao J N. Adv. Mater., 2007, 19: 3554—3558
[63] Zhao Y S, Fu H B, Hu F Q, Peng A D, Yang W S, Yao J N. Adv. Mater., 2008, 20: 79—83
[64] Kim Y, Bouffard J, Kooi S E, Swager T M. J. Am. Chem. Soc., 2005, 127: 13726—13731
[65] Yeh H C, Yeh S J, Chen C T. Chem. Comm., 2003, 2632—2633
[66] Chen C T. Chem. Mater., 2004, 16: 4389—4400
[67] An B K, Kwon S K, Jung S D, Park S Y. J. Am. Chem. Soc., 2002, 124: 14410—14415
[68] Chen C T, Chiang C L, Lin Y C, Chan L H, Huang C H, Tsai Z W, Chen C T. Org. Lett., 2003, 5: 1261—1264
[69] Langhals H, Krotz O, Polborn K, Mayer P. Angew. Chem. Int. Ed., 2005, 44: 2427—2478
[70] Horn D, Rieger J. Angew. Chem. Int. Ed., 2001, 40: 4331—4361
[71] An B K, Kwon S K, Park S Y. Angew. Chem. Int. Ed., 2007, 46: 1978—1982

[1] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[2] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[3] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[4] 王克青, 薛慧敏, 秦晨晨, 崔巍. 二苯丙氨酸二肽微纳米结构的可控组装及应用[J]. 化学进展, 2022, 34(9): 1882-1895.
[5] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[6] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[7] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[8] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[9] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[10] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[11] 田浩, 李子木, 汪长征, 许萍, 徐守芳. 分子印迹荧光传感构建及应用[J]. 化学进展, 2022, 34(3): 593-608.
[12] 张婷婷, 洪兴枝, 高慧, 任颖, 贾建峰, 武海顺. 基于铜金属有机配合物的热活化延迟荧光材料[J]. 化学进展, 2022, 34(2): 411-433.
[13] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[14] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[15] 漆晨阳, 涂晶. 无抗生素纳米抗菌剂:现状、挑战与展望[J]. 化学进展, 2022, 34(11): 2540-2560.