English
新闻公告
More
化学进展 2013, Vol. 25 Issue (11): 1951-1961 DOI: 10.7536/PC130180 前一篇   后一篇

• 综述与评论 •

聚合物基空心微球的制备方法及应用

张卫红1,2, 黄怡1, 田威2*   

  1. 1. 咸阳师范学院化学与化工学院 咸阳 712000;
    2. 空间应用物理与化学教育部重点实验室 陕西省高分子科学与技术重点实验室 西北工业大学理学院应用化学系 西安 710072
  • 收稿日期:2013-01-01 修回日期:2013-04-01 出版日期:2013-11-15 发布日期:2013-09-12
  • 通讯作者: 田威 E-mail:happytw_3000@163.com
  • 基金资助:

    国家自然科学基金项目(No. 21004049)、陕西省自然科学基础研究计划项目(No. 2011JM2012)、陕西省高分子科学与技术重点实验室开放课题和陕西省青年科技新星项目资助

Polymer-Based Hollow Microspheres:Preparation Methods and Applications

Zhang Weihong1,2, Huang Yi1, Tian Wei2*   

  1. 1. College of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang 712000, China;
    2. Key Laboratory of Space Applied Physics and Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Polymer Science and Technology, Department of Applied Chemistry, School of Science, Northwestern Polytechnical University, Xi'an 710072, China
  • Received:2013-01-01 Revised:2013-04-01 Online:2013-11-15 Published:2013-09-12

由于具有低密度、高比表面积和高负载能力等特点,聚合物基空心微球在白色颜料、药物包载及控释、生物活性物质及催化剂载体、微型反应器等领域中具有广泛的应用前景,是当前高分子材料领域的研究热点之一。因此,探索新的合成方法制备聚合物基空心微球具有重要科学意义和广泛的应用价值。本文根据制备方法的不同,分别从渗透溶胀法、模板法、LBL自组装法等制备聚合物基空心微球的经典方法,以及自组装法、软模板法、Pickering乳液聚合法和可自去除模板法等为代表的新方法两大方面进行了总结和概括。同时,还对聚合物基空心微球应用于不同领域做了简要介绍,最后对其当前存在的问题及未来的研究方向进行了探讨。

Due to their advantageous properties such as lower density, high specific surface and high loading capacity, polymer-based hollow microspheres show promising potential of applications in the areas of white pigment, carriers for drugs, bioactive and catalytically active substances, micro-reactor, etc. Thus, it is a worthwhile and challenging work to prepare polymer-based hollow microspheres by exploring new methods and new technologies. Here, the development of the preparation methods and applications of polymer-based hollow microspheres are reviewed. Firstly, the traditional methods, such as osmotic swelling method, hard template synthesis method, layer-by-layer assembly, and etc. are introduced. Then, the new methods presented in recent years, including self-assembly method, soft template synthesis method, Pickering emulsion polymerization and self-removing template method, are emphatically described. Furthermore, the applications of polymer-based hollow microspheres are introduced briefly. At last, the current problems as well as the corresponding research directions are discussed.

Contents
1 Introduction
2 Traditional methods to prepare polymer-based hollow microspheres
2.1 Osmotic swelling method
2.2 Seed swelling polymerization
2.3 Hard template synthesis method
2.4 Layer-by-layer assembly
2.5 Miniemulsion or microemulsion polymerization
2.6 W/O/W method
3 New methods to prepare polymer-based hollow microspheres in recent years
3.1 Solvent-evaporation method
3.2 Self-assembly method
3.3 Soft template synthesis method
3.4 Cross-linked micelles method
3.5 Pickering emulsion polymerization
3.6 Self-removing template method
4 Applications of polymer-based hollow microspheres
4.1 Covering pigment
4.2 Microreactors
4.3 Wastewater treatment
4.4 Drug carrier and controlled release
4.5 Encapsulation and immobilization of bioactive and catalytically active substances
5 Conclusion and outlook

中图分类号: 

()

[1] Bertling J, Blmer J, Kümmel R. Chem. Eng. Technol., 2004, 27: 829—837
[2] Sukhorukov G, Fery A, Mhwald H. Prog. Polym. Sci., 2005, 30: 885—897
[3] Lou X W, Archer L A, Yang Z C. Adv. Mater., 2008, 20: 3987—4019
[4] Zhao Y, Jiang L. Adv. Mater., 2009, 21: 3621—3638
[5] Peng M, Wang H J, Chen Y. Mater. Lett., 2008, 62: 1535—1538
[6] Zhang Q H, Yang Z B, Zhan X L, Chen F Q. J. Appl. Polym. Sci., 2009, 113: 207—215
[7] Tan Y T, Ran F, Wang L R, Kong L B, Kang L. J. Appl. Polym. Sci., 2013, 127: 1544—1549
[8] 吕秋丰(Lv Q F), 张佳音(Zhang J Y), 何志伟(He Z W). 高分子学报(Acta Polymerica Sinica), 2012, (3): 299—306
[9] Du P C, Mu B, Wang Y J, Liu P. Mater. Lett., 2012, 75: 77—79
[10] Wei J, Ju X J, Xie R, Mou C L, Lin X, Chu L Y. J. Colloid Interface Sci., 2011, 357: 101—108
[11] Wang J, Jiang M. J. Am. Chem. Soc., 2006, 128: 3703—3708
[12] Wei W, Ma G H, Wang L Y, Wu J, Su Z G. Acta Biomater., 2010, 6: 205—209
[13] Cevc G. J. Control. Release, 2012, 160: 135—146
[14] Kowalski A, Vogel M, Blankensh R. USP 4427836, 1984
[15] Pavlyuchenko V N, Sorochinskaya O V, Ivanchev S S, Klubin V V, Kreichman G S, Budto V P, Skrifvars M, Halme E, Koskinen J. J. Polym. Sci., Part A: Polym. Chem., 2001, 39: 1435—1449
[16] Pavlyuchenko V N, Sorochinskaya O V, Primachenko O N, Ivanchev S S. Macromol. Symp., 2005, 226: 213—226
[17] He X D, Ge X W, Wang M Z, Zhang Z C. J. Appl. Polym. Sci., 2005, 98: 860—863
[18] Yuan C D, Miao A H, Cao J W, Xu Y S, Cao T Y. J. Appl. Polym. Sci., 2005, 98, 1505—1510
[19] Okubo M, Ito A, Kanenobu T. Colloid Polym. Sci., 1996, 274: 801—804
[20] Okubo M, Nakamura M, Ito A. J. Appl. Polym. Sci., 1997, 64: 1947—1951
[21] Okubo M, Ito A, Nakamura M. Colloid Polym. Sci., 1997, 275: 82—85
[22] Okada M, Matoba T, Okubo M. Colloid Polym. Sci., 2003, 282: 193—197
[23] Okubo M, Ichikawa K, Fujimura M. Colloid Polym. Sci., 1991, 269: 1257—1262
[24] Okubo M, Mori H. Colloid Polym. Sci., 1997, 275: 634—639
[25] Okubo M, Mori H, Ito A. Colloid Polym. Sci., 1999, 277: 589—594
[26] 杨忠兵(Yang Z B), 詹晓力(Zhan X L), 陈丰秋(Chen F Q). 涂料工业(Paint and Coating Industry), 2007, 37: 69—72
[27] Okubo M, Minami H. Colloid Polym. Sci., 1996, 274: 433—438
[28] Hu G H, Yu D M, Zhang J, Liang H L, Cao Z. Colloid J., 2011, 73: 557—564
[29] Itou N, Masukawa T, Ozaki I, Hattori M, Kasai K. Colloids Surf. A: Physiochem. Eng. Asp., 1999, 153: 311—316
[30] Mandal T K, Fleming M S, Walt D R. Chem. Mater., 2000, 12: 3481—3487
[31] Zha L S, Zhang Y, Yang W L, Fu S K. Adv.Mater., 2002, 14: 1090—1092
[32] Wu T, Ge Z S, Liu S Y. Chem. Mater., 2011, 23: 2370—2380
[33] Mu B, Liu P, Tang Z B, Du P C, Dong Y. Nanomedicine, 2011, 7: 789—796
[34] Wang W Q, Lu L C, Chen T Y, Rao M. J. Appl. Polym. Sci., 2012, 126: 974—979
[35] Liu G Y, Zhang H, Yang X L, Wang Y M. Polymer, 2007, 48: 5896—5904
[36] Kato N, Ishii T, Koumoto S. Langmuir, 2010, 26: 14334—14344
[37] Deng T S, Marlow F. Chem. Mater., 2012, 24: 536—542
[38] Nandiyanto A B D, Akane Y, Ogi T, Okuyama K. Langmuir, 2012, 28: 8616—8624
[39] Tan L, Cao L J, Yang M, Wang G, Sun D. Polymer, 2011, 52: 4770—4776
[40] Du P C, Liu P, Mu B, Wang Y J. J. Polym. Sci., Part A: Polym. Chem., 2010, 48: 4981—4988
[41] Li G L, Yang X L, Bai F. Polymer, 2007, 48: 3074—3081
[42] Li G L, Yang X Y, Wang B, Wang J Y, Yang X L. Polymer, 2008, 49: 3436—3443
[43] Yang X Y, Chen L T, Huang B, Bai F, Yang X L. Polymer, 2009, 50: 3556—3563
[44] Yang X Y, Chen L, Han B, Yang X L, Duan H Q. Polymer, 2010, 51: 2533—2539
[45] Liu B, Yan E W, Zhang X, Yang X L, Bai F. J. Colloid Interface Sci., 2012, 369: 144—153
[46] Zhang Y W, Jiang M, Zhao J X, Ren X W, Cheng D Y, Zhang G Z. Adv. Funct. Mater., 2005, 15: 695—699
[47] Zelikin A N, Li Q, Caruso F. Macromolecules, 2003, 36: 4093—4098
[48] Mu B, Liu P, Dong Y, Lu C Y, Wu X L. J. Polym. Sci., Part A: Polym. Chem., 2010, 48: 3135—3144
[49] Saurer E M, Flessner R M, Buck M E, Lynn D M. J. Mater. Chem., 2011, 21: 1736—1745
[50] Tiarks F, Landfester K, Antonietti M. Langmuir, 2001, 17: 908—918
[51] Jang J, Lee K. Chem. Commum., 2002, 1098—1099
[52] Li J, Wang S J, Liu H Y, Liu N. Mater. Rev., 2010, 24: 67—71
[53] Gao F, Su Z G, Wang P, Ma G H. Langmuir, 2009, 25: 3832—3838
[54] Yu Q B, Tao Y L, Huang Y P, Lin Z Q, Zhuang Y L, Ge L L, Shen Y H, Hong M, Xie A J. Ind. Eng. Chem. Res., 2012, 51: 8117—8122
[55] Dowding P J, Atkin R, Vincent B, Bouillot P. Langmuir, 2004, 20: 11374—11379
[56] Cornejo J J M, Daiguji H, Takemura F. J. Phys. Chem. B, 2011, 115: 13828—13834
[57] Sawalha H, Schron K, Boom R. Chem. Eng. J., 2011, 169: 1—10
[58] Murthy V S, Cha J N, Stucky G D, Wong M S. J. Am. Chem. Soc., 2004, 126: 5292—5299
[59] Bagaria H G, Kadali S B, Wong M S. Chem. Mater, 2011, 23: 301—308
[60] Li N, Ye G, He Y N, Wang X. Chem. Commun., 2011, 47: 4757—4759
[61] Peng X H, Zhang L N. Langmuir, 2005, 21: 1091—1095
[62] Wu D, Scott C, Ho C C, Carlos C. Macromolecules, 2006, 39: 5848—5853
[63] Ye C H, Luo Y W, Liu X S. Polymer, 2011, 52: 683—693
[64] Velev O D, Furusawa K, Nagayama K. Langmuir, 1996, 12: 2374—2384
[65] He X D, Ge X W, Wang M Z, Zhang Z C. Polymer, 2005, 46: 7598—7604
[66] He X D, Ge X W, Wang M Z, Zhang Z C. J. Colloid Interface. Sci., 2006, 299: 791—796
[67] Tian J, Yuan L, Zhang M M, Zheng F, Xiong Q Q, Zhao H Y. Langmuir, 2012, 28: 9365—9371
[68] Zhang Y W, Jiang M, Zhao J X, Zhou J, Chen D Y. Macromolecules, 2004, 37: 1537—1543
[69] Chiang W H, Hsu Y H, Lou T W, Chern C S, Chiu H C. Macromolecules, 2009, 42: 3611—3619
[70] Chiang W H, Hsu Y H, Tang F F, Chern C S, Chiu H C. Polymer, 2010, 51: 6248—6257
[71] Pickering S U. J. Chem. Soc., 1907, 91: 2001—2021
[72] Binks B P, Murakami R, Armes S P, Fujii S. Langmuir, 2006, 22: 2050—2057
[73] Mell S, Lask M, Fuller G G. Langmuir, 2005, 21: 2158—2162
[74] Tsuji S, Kawaguchi H. Langmuir, 2008, 24: 3300—3305
[75] Cauvin S, Colver P J, Bon S A F. Macromolecules, 2005, 38: 7887—7889
[76] Bon S A F, Colver P J. Langmuir, 2007, 23: 8316—8322
[77] Kim S H, Yi G R, Kim K H, Yang S M. Langmuir, 2008, 24: 2365—2371
[78] He Y J, Yu X Y. Mater. Lett., 2007, 61: 2071—2074
[79] Jeng J, Chen T Y, Lee C F, Liang N Y, Chiu W Y. Polymer, 2008, 49: 3265—3271
[80] Yang S, Liu H R, Zhang Z C. J. Polym. Sci., Part A: Polym. Chem., 2008, 46: 3900—3910
[81] 范晓东(Fan X D), 张卫红(Zhang W H), 田威(Tian W), 范伟伟(Fan W W). CN 101704529 B, 2011
[82] Zhang W H, Fan X D, Tian W, Fan W W. eXPRESS Polymer Letters, 2012, 6: 532—542
[83] 张卫红(Zhang W H), 范晓东(Fan X D), 田威(Tian W), 黄怡(Huang Y). 高分子材料科学与工程(Polymer Materials Science & Engineering), 2012, 28(8): 14—17
[84] 张卫红(Zhang W H), 范晓东(Fan X D), 范伟伟(Fan W W), 田威(Tian W). 功能材料(Journal of Functional Materials), 2010, 41(4): 644—647
[85] 张卫红(Zhang W H), 范晓东(Fan X D), 田威(Tian W), 范伟伟(Fan W W), 程广文(Cheng G W). 化学学报(Acta Chimica Sinica), 2011, 69 (17): 2047—2052
[86] He X D, Ge X W, Liu H R, Wang M Z, Zhang Z C. Chem. Mater., 2005, 17: 5891—5892
[87] Qian J, Wu F P. Chem. Mater., 2007, 19: 5839—5841
[88] Weda P, Trzebicka B, Dworak A, Tsvetanov C B. Polymer, 2008, 49: 1467—1474
[89] 张卫红(Zhang W H), 黄怡(Huang Y), 田威(Tian W). 中国科学: 化学(Scientia Sinica Chimica), 2013, 43(9): 1164—1171
[90] McDonald C J, Devon M J. Adv. Colloid Interface Sci., 2002, 99: 181—213
[91] Kowalski A, Vogel M, Blankenship R M. US 4468498, 1984
[92] Blankenship R M, Kowalski A. US 4594363, 1986
[93] Kowalski A, Meeting P, Vogel M. US 4880825, 1989
[94] 靳丽强(Jin L Q), 刘宗林(Liu Z L), 徐清华(Xu Q H), 李彦春(Li Y C). 现代化工(Modern Chemical Industry), 2003, (23): 27—30
[95] 徐清华(Xu Q H), 靳丽强(Jin L Q).中国造纸(China Pulp & Paper), 2004, (24): 10—13
[96] Fasano D. EP 497507, 1993
[97] Shchukin D G, Mohwald H. Langmuir, 2005, 21: 5582—5587
[98] Yang L, Zhang M C, Lan Y, Zhang W Q. New J. Chem., 2010, 34: 1355—1364
[99] Wyss A, Boucher J, Montero A, Marison I. Enzyme Microb. Technol., 2006, 40: 25—31
[100] Ke C J, Su T Y, Chen H L, Liu H L, Chiang W L, Chu P C, Xia Y N, Sung H W. Angew. Chem. Int. Ed., 2011, 50: 8086—8089
[101] Mu B, Liu P, Li X R, Du P C, Dong Y, Wang Y J. Mol. Pharmaceutics, 2012, 9: 91—101
[102] Caruso F, Trau D, Mohwald H, Renneberg R. Langmuir, 2000, 16: 1485—1488
[103] Cortez C, Tomaskovic-Crook E, Johnston A P R, Radt B, Cody S H, Scott A M, Nice E C, Heath J K, Caruso F. Adv. Mater., 2006, 18: 1998—2003
[104] Zelikin A N, Li Q, Caruso F. Angew. Chem. Int. Ed., 2006, 45: 7743—7745
[105] Koker S D, Cock L J D, Rivera-Gil P, Parak W J, Velty R A, Vervaet C, Remon J P, Grooten J, Geest B G D. Adv. Drug Deliv. Rev., 2011, 63: 748—761

[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[3] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[4] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[5] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[6] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.
[7] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[8] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[9] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[10] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[11] 陈怡峰, 王聪, 任科峰, 计剑. 生物医用高通量研究中的微液滴阵列[J]. 化学进展, 2021, 33(4): 543-554.
[12] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[13] 赵平平, 杨军星, 施健辉, 朱静怡. 基于树状大分子的SPECT成像造影剂的构建及其应用[J]. 化学进展, 2021, 33(3): 394-405.
[14] 徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178.
[15] 靳钧, 林梓恒, 石磊. 一维新型碳的同素异形体:碳链[J]. 化学进展, 2021, 33(2): 188-198.