English
新闻公告
More
化学进展 2013, Vol. 25 Issue (11): 1898-1905 DOI: 10.7536/PC130149 前一篇   后一篇

• 综述与评论 •

钯和铜催化的脂肪醇和芳基卤代烃偶联反应

金小平1*, 张莉3, 高浩其2, 房江华2, 李瑞丰3, 方烨汶2,4*   

  1. 1. 浙江医药高等专科学校基础部 宁波 315100;
    2. 宁波工程学院化学工程学院 宁波 315016;
    3. 太原理工大学化学化工学院 太原 030024;
    4. 宁波现代精细化工有限公司 宁波 315204
  • 收稿日期:2013-01-01 修回日期:2013-03-01 出版日期:2013-11-15 发布日期:2013-09-12
  • 通讯作者: 金小平, 方烨汶 E-mail:xiaop.jin@gmail.com;nbut.fang@gmail.com
  • 基金资助:

    国家自然科学基金项目(No. 21202090)、宁波市科技创新团队项目(No. 2011B2002)、浙江省自然科学基金项目(No. LY12B02001)、宁波市自然科学基金项目(No. 2011A610123, 2012A610123 )资助

Palladium- and Copper-Catalyzed Cross Coupling Reaction of Aliphatic Alcohols and Aryl Halides

Jin Xiaoping1*, Zhang Li3, Gao Haoqi2, Fang Jianghua2, Li Ruifeng3, Fang Yewen2,4*   

  1. 1. Department of Basic Education, Zhejiang Pharmaceutical College, Ningbo 315100, China;
    2. School of Chemical Engineering, Ningbo University of Technology, Ningbo 315016, China;
    3. College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024;
    4. Ningbo Current Tech Fine Chemical Co. Ltd., Ningbo 315204, China
  • Received:2013-01-01 Revised:2013-03-01 Online:2013-11-15 Published:2013-09-12

烷基芳基醚广泛存在于天然产物和药物分子中。钯和铜催化构筑C—O键的方法已成为合成烷基芳基醚的有效策略。本文总结了钯和铜催化的脂肪醇芳基化反应的最新研究进展。 以Buchwald小组发展的基于联苯骨架的二叔丁基取代单膦配体, Hartwig小组发展的基于五苯基取代的二茂铁骨架的二叔丁基取代单膦配体或 Beller小组发展的基于二吡唑骨架的二金刚烷基取代的单膦配体,可高效实现钯催化的各类脂肪醇和芳基卤代烃的C—O偶联。 在铜催化反应条件下,1,10-菲罗啉及其衍生物和β-二羰基化合物是反应活性最高的两类配体。 总的来说,和铜催化条件相比,钯催化的C—O偶联反应具有反应条件温和,官能团兼容性好,底物普适性广等优点。 此外,对两类催化体系在配体选用、反应活性、β-H消除反应和反应机理等方面的差异进行了探讨。 设计与合成新型配体被认为是C—O偶联反应取得进一步发展的关键。

Alkyl aryl ethers are present in many naturally occurring and medicinally relevant compounds. Palladium- and copper-catalyzed C—O bond formation reactions have become effective strategies for their preparation. Recent developments in palladium- and copper-catalyzed arylations of aliphatic alcohols are summarized in this review. Palladium-catalyzed C—O cross coupling of various aliphatic alcohols with aryl halides could be efficiently realized in the presence of di-tert-buthyl biarylphosphine ligand, di-tert-buthylphosphino pentaphenylferrocene ligand, or di-adamantyl-substituted Bippyphos ligand developed by Buchwald, Hartwig, and Beller groups respectively. With the copper catalyst, 1, 10-phenanthroline and its derivatives, β-dicarbonyl compounds were served as the most efficient ligands. Generally, palladium-catalyzed C—O cross-coupling reactions display mild reaction conditions, good functional-group compatability, and broad substrate scope compared to the copper catalyst system. Moreover, the difference of the two catalytic systems including the choice of ligand, reactivity, β-H elimination and mechanism is discussed. The design and synthesis of new ligands are the key point for the further development of the C—O cross coupling.

Contents
1 Introduction
2 Pd-catalzyed arylation of alphatic alcohols
3 Cu-catalyzed arylation of alphatic alcohols
3.1 Cu-catalyzed C—O cross coupling reaction without ligand
3.2 Cu-catalyzed C—O cross coupling reaction in the presence of ligand
4 Comparative studies of two catalysts
4.1 Choice of ligands
4.2 Catalytic activity
4.3 β-H elimination reaction
4.4 Reaction mechanism
5 Conclusion and outlook

中图分类号: 

()

[1] Diederich F, Meijere A. Metal-Catalyzed Cross-Coupling Reactions. Weinheim: Wiley-VCH, 2004
[2] Hassan J, Sévignon M, Gozzi C, Schulz E, Lemaire M. Chem. Rev., 2002, 102 (5): 1359—1470
[3] Miyaura N. Topics in Current Chemistry. Vol. 219. New York: Springer-Verlag, 2002
[4] Frlan R, Kikelj D. Synthesis, 2006, (14): 2271—2285
[5] 于海珠 (Yu H Z), 傅尧 (Fu Y), 白小宇 (Bai X Y), 郭庆祥 (Guo Q X). 化学进展 (Progress in Chemsitry), 2010, 22 (4): 557—572
[6] Sawyer J S. Tetrahedron, 2000, 56 (29): 5045—5065
[7] Enthaler S, Company A. Chem. Soc. Rev., 2011, 40 (10): 4912—4924
[8] Palucki M, Wolfe J P, Buchwald S L. J. Am. Chem. Soc., 1996, 118 (42): 10333—10334
[9] Mann G, Hartwig J F. J. Am. Chem. Soc., 1996, 118 (51): 13109—13110
[10] Mann G, Incarvito C, Rheingold A L, Hartwig J F. J. Am. Chem. Soc., 1999, 121 (13): 3224—3225
[11] Shelby Q, Kataoka N, Mann G, Hartwig J F. J. Am. Chem. Soc., 2000, 122 (43): 10718—10719
[12] Kataoka N, Shelby Q, Stambuli J P, Hartwig J F. J. Org. Chem., 2002, 67 (16): 5553—5566
[13] Torraca K E, Kuwabe S I, Buchwald S L. J. Am. Chem. Soc., 2000, 122 (51): 12907—12908
[14] Kuwabe S I, Torraca K E, Buchwald S L. J. Am. Chem. Soc., 2001, 123 (49): 12202—12206
[15] Vorogushin A V, Huang X, Buchwald S L. J. Am. Chem. Soc., 2005, 127 (22): 8146—8149
[16] Singer R A, Doré M, Sieser J E, Berliner M A. Tetrahedron Lett., 2006, 47 (22): 3727—3731
[17] Withbroe G J, Singer R A, Sieser J E. Org. Process. Res. Dev., 2008, 12 (3): 480—489
[18] Gowrisankar S, Sergeev A G, Anbarasan P, Spannenberg A, Neumann H, Beller M. J. Am. Chem. Soc., 2010, 132 (33): 11592—11598
[19] Gowrisankar S, Neumann H, Beller M. ChemCatChem, 2011, 3 (9): 1439—1441
[20] Gowrisankar S, Neumann H, Beller M. Chem. Eur. J., 2012, 18 (9): 2498—2502
[21] Wu X, Fors B P, Buchwald S L. Angew. Chem. Int. Ed., 2011, 50 (42): 9943—9947
[22] Hoshiya N, Buchwald S L. Adv. Synth. Catal., 2012, 354 (10): 2031—2037
[23] Zhu R, Buchwald S L. Angew. Chem. Int. Ed., 2012, 51 (8): 1926—1929
[24] Dash P, Janni M, Peruncheralathan S. Eur. J. Org. Chem., 2012, (26): 4914—4917
[25] Maligres P E, Li J, Krska S W, Schreier J D, Raheem I T. Angew. Chem. Int. Ed., 2012, 51 (36): 9071—9074
[26] Watanabe M, Nishivama M, Koie Y. Tetrahedron Lett., 1999, 40 (50): 8837—8840
[27] Ylijoki K E O, Kündig E P. Chem. Commun., 2011, 47 (38): 10608—10610
[28] Jing X B, Yan C G, Sun J, Wang L, An L. Chin. Chem. Lett., 2004, 15 (12): 1392—1394
[29] Neogi A, Majhi T P, Achari B, Chattopadhyay P. Eur. J. Org. Chem., 2008, (2): 330—336
[30] Bhattacharya D, Behera A, Hota S K, Chattopadhyay P. Synthesis, 2011, (4): 585—592
[31] Khoumeri O, Crozet M D, Terme T, Vanelle P. Tetrahedron Lett., 2009, 50 (46): 6372—6376
[32] Meng T, Zhang W X, Zhang H J, Liang Y, Xi Z. Synthesis, 2012, 44 (17): 2754—2762
[33] Ullmann F. Chem. Ber., 1904, 37: 853—854
[34] Lindley J. Tetrahedron, 1984, 40 (9): 1433—1456
[35] Chan D M T, Monaco K L, Wang R P, Winters M P. Tetrahedron Lett., 1998, 39 (19): 2933—2936
[36] Lam P Y S, Clark C G, Saubern S, Adams J, Winters M P, Chan D M T, Combs A. Tetrahedron Lett., 1998, 39 (19): 2941—2944
[37] Rao K S, Wu T S. Tetrahedron, 2012, 68 (38): 7735—7754
[38] Quach T D, Batey R A. Org. Lett., 2003, 5 (8): 1381—1384
[39] Lam P Y S, Vincent G, Bonne D, Clark C G. Tetrahedron Lett., 2003, 44 (26): 4927—4931
[40] Mondal M, Sarmah G, Gogoi K, Bora U. Tetrahedron Lett., 2012, 53 (46): 6219—6222
[41] Sicé J. J. Am. Chem. Soc., 1953, 75 (15): 3697—3700
[42] Keegstra M A, Peters T H A, Brandsma L. Tetrahedron, 1992, 48 (17): 3633—3652
[43] Basu B, Das S, Mandal B. Indian J. Chem. Sect B, 2008, 47B (11): 1701—1706
[44] Aalten H L, van Koten G, Grove D M, Kuilman T, Piekstra O G, Hulshof L A, Sheldon R A. Tetrahedron, 1989, 45 (17): 5565—5578
[45] Amberg W, Bennani Y L, Chadha R K, Crispino G A, Davis W D, Hartung J, Jeong K S, Ogino Y, Shibata T, Sharpless K B. J. Org. Chem., 1993, 58 (4): 844—849
[46] Huang J K, Chen Y, Chan J, Ronk M L, Larsen R D, Faul M M. Synlett, 2011, (10): 1419—1422
[47] Zhu J Y, Price B A, Zhao S X, Skonezny P M. Tetrahedron Lett., 2000, 41 (21): 4011—4014
[48] Bovicelli P, Antonioletti R, Onori A, Delogu G, Fabbri D, Dettori M A. Tetrahedron, 2006, 62 (4): 635—639
[49] Maiti D. Chem. Commun., 2011, 47 (29): 8340—8342
[50] Ley S V, Thomas A W. Angew. Chem. Int. Ed., 2003, 42 (44): 5400—5449
[51] Beletskaya I P, Cheprakov A V. Coord. Chem. Rev., 2004, 248 (21/24): 2337—2364
[52] Sadig J E R, Willis M C. Synthesis, 2011, (1): 1—22
[53] Dehli J R, Legros J, Bolm C. Chem. Commun., 2005, (8): 973—986
[54] Fang Y W, Li C Z. Chem. Commun., 2005, (28): 3574—3576
[55] Fang Y W, Li C Z. J. Org. Chem., 2006, 71 (17): 6427—6431
[56] Fagan P J, Hauptman E, Shapiro R, Casalnuovo A. J. Am. Chem. Soc., 2000, 122 (21): 5043—5051
[57] Wolter M, Nordmann G, Job G E, Buchwald S L. Org. Lett., 2002, 4 (6): 973—976
[58] Job G E, Buchwald S L. Org. Lett., 2002, 4 (21): 3703—3706
[59] Bao W L, Liu Y Y, Lv X, Qian W X. Org. Lett., 2008, 10 (17): 3899—3902
[60] Liu Y Y, Bao W L. Org. Biomol. Chem., 2010, (12): 2700—2703
[61] Hosseinzadeh R, Tajbakhsh M, Mohadjerani M, Alikarami M. Synlett, 2005, (7): 1101—1104
[62] Dibakar M, Prakash A, Selvakumar K, Ruckmani K, Sivakumar M. Tetrahedron Lett., 2011, 52 (41): 5338—5341
[63] Fang Y W, Li C Z. J. Am. Chem. Soc., 2007, 129 (26): 8092—8093
[64] Altman R A, Shafir A, Chio A, Lichtor P A, Buchwald S L. J. Org. Chem., 2007, 73 (1): 284—286
[65] Nordmann G, Buchwald S L. J. Am. Chem. Soc., 2003, 125 (17): 4978—4979
[66] Polaske N W, Szalai M L, Shanahan C S, McGrath D V. Org. Lett., 2010, 12 (21): 4944—4947
[67] Shafir A, Lichtor P A, Buchwald S L. J. Am. Chem. Soc., 2007, 129 (12): 3490—3491
[68] Jones G O, Liu P, Houk K N, Buchwald S L. J. Am. Chem. Soc., 2010, 132 (17): 6205—6213
[69] Yu H Z, Jiang Y Y, Fu Y, Liu L. J. Am. Chem. Soc., 2010, 132 (51): 18078—18091
[70] Zhang H, Ma D W, Cao W G. Synlett, 2007, (2): 243—246
[71] Niu J J, Zhou H, Li Z G, Xu J W, Hu S J. J. Org. Chem., 2008, 73 (19): 7814—7817
[72] Niu J J, Guo P, Kang J T, Li Z G, Xu J W, Hu S J. J. Org. Chem., 2009, 74 (14): 5075—5078
[73] Vuluga D, Legros J, Crousse B, Bonnet-Delpon D. Eur. J. Org. Chem., 2009, (21): 3513—3518
[74] Maligres P E, Krska S W, Dormer P G. J. Org. Chem., 2012, 77 (17): 7646—7651
[75] Widenhoefer R A, Zhong H A, Buchwald S L. J. Am. Chem. Soc., 1997, 119 (29): 6787—6795
[76] Widenhoefer R A, Buchwald S L. J. Am. Chem. Soc., 1998, 120 (26): 6504—6511
[77] Aranyos A, Old D W, Kiyomori A, Wolfe J P, Sadighi J P, Buchwald S L. J. Am. Chem. Soc., 1999, 121 (18): 4369—4378
[78] Giri R, Hartwig J F. J. Am. Chem. Soc., 2010, 132 (45): 15860—15863
[79] Beletskaya I P, Cheprakov A V. Organometallics, 2012, 31 (22): 7753—7808
[80] Monnier F, Taillefer M. Angew. Chem. Int. Ed., 2009, 48 (38): 6954—6971
[81] Chen C Y, Weisel M. Synlett, 2013, 24 (2): 189—192
[82] Manbeck G F, Lipman A J, Stockland R A Jr, Freidl A L, Hasler A F, Stone J J, Guzei I A. J. Org. Chem., 2005, 70 (1): 244—250
[83] Mehmood A, Denine W G, Leadbeater N E. Top. Catal., 2010, 53 (15/18): 1073—1080

[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 白文己, 石宇冰, 母伟花, 李江平, 于嘉玮. Cs2CO3辅助钯催化X—H (X=C、O、N、B)官能团化反应的理论计算研究[J]. 化学进展, 2022, 34(10): 2283-2301.
[3] 孙亚芳, 周子平, 舒桐, 钱立生, 苏磊, 张学记. 多彩金纳米簇:从结构到生物传感和成像[J]. 化学进展, 2021, 33(2): 179-187.
[4] 秦瑞轩, 邓果诚, 郑南峰. 金属纳米材料表面配体聚集效应[J]. 化学进展, 2020, 32(8): 1140-1157.
[5] 邹慧娜, 朱守非. 邻菲罗啉类配体在铁系元素催化反应中的应用[J]. 化学进展, 2020, 32(11): 1766-1803.
[6] 戴立信*. Ullmann反应百年纪念及近期复兴——兼及碳-杂原子键的形成[J]. 化学进展, 2018, 30(9): 1257-1297.
[7] 单艳群, 王晓英*. 赭曲霉毒素A的电化学适体传感检测[J]. 化学进展, 2018, 30(6): 797-808.
[8] 韩志勇, 龚流柱*. 手性有机小分子和钯联合不对称催化[J]. 化学进展, 2018, 30(5): 505-512.
[9] 袁世芳, 王丽静, 张秋月, 孙文华. 三齿配位钛配合物催化烯烃聚合[J]. 化学进展, 2017, 29(12): 1462-1470.
[10] 张晓鹏*, 董淑祥, 范学森, 张贵生. 邻氨基苯甲酰胺类化合物的合成[J]. 化学进展, 2017, 29(11): 1351-1356.
[11] 王亚立, 李贞, 刘志洪. 上转换荧光纳米材料的水溶性修饰[J]. 化学进展, 2016, 28(5): 617-627.
[12] 王雪珠, 谭忱, 李永琪, 张恒, 刘晔. 离子型膦配体及其离子型过渡金属配合物的合成和均相催化作用[J]. 化学进展, 2015, 27(1): 27-37.
[13] 吴宇轩, 刘宁, 丁颂东. 用于锕系分离和三价镧系/锕系分离的水溶性配体[J]. 化学进展, 2014, 26(10): 1655-1664.
[14] 范观铭, 韩骞, 熊兴泉. 基于无铜点击反应的水凝胶合成[J]. 化学进展, 2014, 26(07): 1223-1232.
[15] 韩彬, 廖霞俐, 杨波. 基于环糊精的靶向药物传递系统[J]. 化学进展, 2014, 26(06): 1039-1049.