English
新闻公告
More
化学进展 2013, Vol. 25 Issue (11): 1842-1857 DOI: 10.7536/PC130148 前一篇   后一篇

• 综述与评论 •

欠电位沉积研究进展

郭雷, 谭建红*, 李文坡, 胡舸, 张胜涛   

  1. 重庆大学化学化工学院 重庆 400044
  • 收稿日期:2013-01-01 修回日期:2013-04-01 出版日期:2013-11-15 发布日期:2013-09-12
  • 通讯作者: 谭建红 E-mail:fwjshen@163.com
  • 基金资助:

    中央高校基本科研业务费专项资金项目(No. CDJZR11220003)和国家自然科学基金青年科学基金项目(No. 21003163)资助

Underpotential Deposition

Guo Lei, Tan Jianhong*, Li Wenpo, Hu Ge, Zhang Shengtao   

  1. School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
  • Received:2013-01-01 Revised:2013-04-01 Online:2013-11-15 Published:2013-09-12

欠电位沉积(underpotential deposition,UPD)是指一种金属可在比其热力学可逆电位正的电位下沉积在另一基体上的现象,是一个与电极/溶液结构密切相关的重要的电化学现象。从广义上讲,定义中的沉积元素与基体不仅仅局限于金属元素,还包括非金属元素、纳米粒子等其它物质。由于单原子厚度的异种金属能显著改变界面附近的电势分布和影响溶剂分子的取向,并改变基底金属表面的吸附行为和反应能力,使得UPD在电催化和金属与合金电沉积研究中颇受重视。迄今为止,已报道了大量UPD实验现象。本文在现有文献基础上,总结了UPD的若干理论模型及其行为特征,着重探讨了衬底、离子吸附、温度等因素对UPD过程的影响作用,介绍了UPD应用的主要成功实例,并对其研究前景提出了展望。

Underpotential deposition (UPD), the phenomenon of metal monolayer(s) formation on a foreign metal substrate at a potential more positive than the equilibrium potential for bulk electro-deposition, has been the subject of considerable research in recent years because it yields model systems for investigation of the electrode/electrolyte interface. Broadly speaking, the defined sedimentary elements or substrates of UPD are not limited to metal elements, and also include other substances such as nonmetallic elements, nano-particles, and so forth. In virtue of the great potential that monolayer film of dissimilar metals can significantly change the potential distribution near the interface, the orientation of the solvent molecules and the adsorption behaviors and reaction ability of the base metal surface, UPD draws great academic attention to its applications in electro-catalysis as well as electro-deposition of metal and alloy. A large number of experimental reports about UPD have been published so far. Based on literature in existence, several theoretical models and the behavior characteristics of UPD were summarized. Moreover, some factors such as substrates, ionic adsorption and temperature on the UPD process were emphasized. Finally, its practical applications were highlighted and the future research directions were pointed out.

Contents
1 Introduction
2 Theoretical models for UPD
2.1 Relations between UPD potential shifts and work functions
2.2 Thermodynamic model
2.3 DFT method
2.4 Monte Carlo method
3 The processes of UPD
3.1 Nucleation characteristics
3.2 Influence of substrate
3.3 Influence of adsorption ions
3.4 Effect of temperature
4 Applications
4.1 Improve electrocatalytic activity
4.2 EC-ALE technology
4.3 Self-assembled monolayer
5 Conclusion and outlook

中图分类号: 

()

[1] Matsumoto H, Oda I, Inukai J, Ito M. J. Electroanal. Chem., 1993, 356: 275— 280
[2] Buller L J, Herrero E, Gomez R, Feliu J M, Abruna H D. J. Phys. Chem. B, 2000, 104: 5932—5939
[3] Jovi D? B M, Jovi D? V D, Dra?i D? D M. J. Electroanal. Chem., 1995, 399: 197—206
[4] Colletti L P, Teklay D, Stickney J L. J. Electroanal. Chem., 1994, 369: 145—152
[5] Kontrec J, Svetlicic V. Electrochimica Acta, 1998, 43: 589 —598
[6] Clavilier J, Rodes A, Elachi K, Zamakhchari M A. J. Chim. Phys. Phys.-Chim. Biol., 1991, 88: 1291—1337
[7] Arrigan D W M, Iqbal T, Pickup M J. Electroanalysis, 2001, 13: 751—754
[8] Wang C M, Du Y L, Zhou Z L. Electroanalysis, 2002, 14: 849—852
[9] Montes-Rojas A, Torres-Rodriguez L M, Nieto-Delgado C. New J. Chem., 2007, 31: 1769—1776
[10] Yanson Y, Frenken J W M, Rost M J. Phys. Chem. Chem. Phys., 2011, 13: 16095—16103
[11] Alonso C, Pascual M J, Abrua H D. Electrochimica Acta, 1997, 42: 1739—1750
[12] Rudnev A V, Molodkina E B, Danilov A I, Polukarov Y M, Feliu J M. Electrochem. Commun., 2008, 10: 502—505
[13] Taguchi S, Aramata A. J. Electroanal. Chem., 1995, 396: 131—137
[14] Mascaro L H, Santos M C, Machado S A S, Avaca L A. J. Chem. Soc. Faraday Trans., 1997, 93: 3999—4003
[15] Markovic N M, Grgur B N, Lucas C A, Ross P N. J. Chem. Soc. Faraday Trans., 1998, 94: 3373—3379
[16] Alanyalioglu M, Cakal H, Ozturk A E, Demir U. J. Phys. Chem. B, 2001, 105: 10588—10593
[17] Nicic I, Liang J, Cammarata V, Alanyalioglu M, Demir U, Shannon C. J. Phys. Chem. B, 2002, 106: 12247—12252
[18] Bravo B G, Michelhaugh S L, Soriaga M P, Villegas I, Suggs D W, Stickney J L. J. Phys. Chem., 1991, 95: 5245—5249
[19] Brisard G M, Zenati E, Gasteiger H A, Markovic N M, Ross P N. Langmuir, 1997, 13: 2390—2397
[20] Beckmann H O, Gerischer H, Kolb D M, Lehmpfuhl G. Faraday Symp. Chem. Soc., 1977, 12: 51—58
[21] Pierozynski B, Zolfaghari A, Conway B E. Phys. Chem. Chem. Phys., 2001, 3: 469—478
[22] Chen Y X, Heinen M, Jusys Z, Behm R J. J. Phys. Chem. C, 2007, 111: 435—438
[23] Brisard G M, Zenati E, Gasteiger H A, Markovic N M, Ross P N. Langmuir, 1997, 13: 2390—2397
[24] Cabral M F, Calegaro M L, Machado S A S. RSC Adv., 2012, 2: 2498—2503
[25] Zeng X J. Bruckenstein S. J. Electroanal. Chem., 1999, 461: 143—153
[26] Calegaro M L, Santos M C, Miwa D W, Machado S A S. Surf. Sci., 2005, 579: 58—64
[27] Li W P, Zhang S T. Appl. Surf. Sci., 2011, 257: 3275 —3280
[28] Lee J, Hwang S, Lee H, Kwak J. J. Phys. Chem. B, 2004, 108: 5372—5379
[29] Okada J, Inukai J, Itaya K. Phys. Chem. Chem. Phys., 2001, 3: 3297—3302
[30] Hommrich J, Hümann S, Wandelt K. Faraday Discuss., 2002, 121: 129—138
[31] Pan G B, Freyland W. Phys. Chem. Chem. Phys., 2007, 9: 3286—3290
[32] Hayden B E, Nandhakumar I S. J. Phys. Chem. B, 1997, 101: 7751—7757
[33] Shue C H, Yau S L. J. Phys. Chem. B, 2001, 105: 5489 —5496
[34] Fu Y C, Su Y Z, Zhang H M, Yan J W, Xie Z X, Mao B W. Electrochim. Acta, 2010, 55: 8105—8110
[35] Fu Y C, Yan J W, Wang Y, Tian J H, Zhang H M, Xie Z X, Mao B W. J. Phys. Chem. C, 2007, 111: 10467—10477
[36] Chen C H, Washburn N, Gewirth A A. J. Phys. Chem., 1993, 97: 9754—9760
[37] Li J, Herrero E, Abruna H D. Colloid. Surface. A, 1998, 134: 113—131
[38] Abaci S, Zhang L S, Shannon C. J. Electroanal. Chem., 2004, 571: 169—176
[39] Tamura K, Wang J X, Adic R R, Ocko B M. J. Phys. Chem. B, 2004, 108: 1992—1998
[40] Lee J R I, O'Malley R L, O'Connell T J, Vollmer A, Rayment T. J. Phys. Chem. C, 2009, 113: 12260—12271
[41] Lee J R I, O'Malley R L, O'Connell T J, Vollmer A, Rayment T. Electrochim. Acta, 2010, 55: 8532—8538
[42] Yee H S, Abrua H D. J. Phys. Chem., 1994, 98: 6552 —6558
[43] Tsirlina G, Mishina E, Timofeeva E, Tanimura N, Sherstyuk N, Borzenko M, Nakabayashi S, Petrii O. Faraday Discuss., 2008, 140: 245—267
[44] Mishina E D, Tsirlina G A, Timofeeva E V, Sherstyuk N E, Borzenko M I, Tanimura N, Nakabayashi S, Petrii O A. J. Phys. Chem. B, 2004, 108: 17096—17105
[45] Horányi G, Aramata A. J. Electroanal. Chem., 1997, 434: 201—207
[46] Marczona R, Varga K. J. Radioanal. Nucl. Chem., 2006, 269: 29—42
[47] 查全性(Zha Q X). 电极过程动力学导论(第二版) (Introduction to Electrode Kinetics, 2nd ed. ). 北京: 科学出版社(Beijing: Science Press), 1987. 439—440
[48] 颜永得(Yan Y D), 张密林(Zhang M L), 韩伟(Han W), 薛云(Suo Y), 何立义(He L Y), 陈增(Chen Z), 唐定骧(Tang D X). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2008, 24: 902—906
[49] 陈丽军(Chen L J), 张密林(Zhang M L), 韩伟(Han W), 颜永得(Yan Y D), 曹鹏(Cao P). 高等学校化学学报(Chemical Journal of Chinese Universities), 2012, 33: 327—330
[50] Pitner W R, Hussey C L. J. Electrochem. Soc., 1997, 144: 3095—3103
[51] Du Y L, Wang C M. Chin. J. Chem., 2002, 20: 596—600
[52] Herrero E, Li J, Abruna H D. Electrochim. Acta, 1999, 44: 2385—2396
[53] Attard G A, Price R, Alakl A. Electrochim. Acta, 1994, 39: 1525—1530
[54] Varga K, Zelenay P, Horanyi G, Wieckowski A. J. Electro anal. Chem., 1992, 327: 291—306
[55] Wei Z D, Li L L, Luo Y H, Yan C, Sun C X, Yin G Z, Shen P K. J. Phys. Chem. B, 2006, 110(51): 26055— 26061
[56] Marinkovic N S, Fawcett W R, Wang J X, Adzic R R. J. Phys. Chem., 1995, 99: 17490—17493
[57] Gomez R, Llorca M J, Feliu J M, Aldaz A. J. Electroanal. Chem., 1992, 340: 349—355
[58] Peng B, Wang J Y, Zhang H X, Lin Y H, Cai W B. Electrochem. Commun., 2009, 11: 831—833
[59] Clavilier J, Feliu J M, Fernandez-Vega A, Aldaz A. J. Electroanal. Chem., 1990, 294: 193—208
[60] Jin C C, Zhang Z, Chen Z D, Chen Q. Electrochim. Acta, 2013, 87: 860—864
[61] Ritzoulis G, Georgolios N. J. Electroanal. Chem., 1993, 346: 405—414
[62] Taguchi S, Fukuda T, Aramata A. J. Electroanal. Chem., 1997, 435: 55—61
[63] Shin J W, Bertocci U, Stafford G R. J. Phys. Chem. C, 2010, 114: 17621—17628
[64] Rodes A, Herrero E, Feliu J M, Aldaz A. J. Chem. Soc., Faraday Trans., 1996, 92: 3769—3776
[65] Morin S, Lachenwitzer A, Moller F A, Magnussen O M, Behm R J. J. Electrochem. Soc., 1999, 146: 1013—1018
[66] Zhu W, Yang J Y, Zhou D X, Bao S Q, Fan X A, Duan X K. Electrochim. Acta, 2007, 52: 3660—3666
[67] Lister T E, Stickney J L. J. Phys. Chem., 1996, 100: 19568—19576
[68] Dietterle M, Will T, Kolb D M. Surf. Sci., 1995, 342: 29—802
[69] Daujotis V, Gaidamauskas E. J. Electroanal. Chem., 1998, 446: 151—157
[70] Bewick A, Thomas B. J. Electroanal. Chem., 1977, 84: 127—140
[71] Toney M F, Gordon J G, Samant M G, Borges G L, Wiesler D G, Langmuir, 1991, 7: 796—802
[72] Bort H, Juttner K, Lorenz W J, Staikov G. Electrochim. Acta, 1983, 28: 993—1001
[73] Miragliotta J, Furtak T E. Surf. Interface Anal., 1989, 14: 53—58
[74] Berg D A, Vandernoot V A, Barradas R G, Lai E P C. J. Electroanal. Chem., 1994, 369: 33—37
[75] Kizhakevariam N, Weaver M J. Surf. Sci., 1992, 277: 21— 30
[76] Yang L Y O, Bensliman F, Shue C H, Yang Y C, Zang Z H, Wang L, Yau S L, Yoshimoto S, Itaya K. J. Phys. Chem. B, 2005, 109: 14917—14924
[77] Kolb D M, Przasnyski M, Gerischer H. J. Electroanal. Chem. Interfacial Electrochem., 1974, 54: 25—38
[78] Pletcher D, Rohan J F, Rithie A G. Electrochim. Acta, 1994, 39: 1369—1376
[79] Tsuru T, Kobayashi S, Akiyama T, Fukushima H, Gogia S K, Kammel R. J. Appl. Electrochem., 1997, 27: 209—214
[80] Conway B E, Chacha J S. J. Electroanal. Chem. Interfacial Electrochem., 1990, 287: 13—41
[81] Paddon C A, Compton R G. J. Phys. Chem. C, 2007, 111: 9016—9018
[82] Leiva E, Schmickler W. Chem. Phys. Lett., 1989, 160: 75 —79
[83] Schmickler W. Chem. Phys., 1990, 141: 95—104
[84] Sudha V, Sangaranarayanan M V. J. Phys. Chem. B, 2002, 106: 2699—2707
[85] Trasatti S. Advances in Electrochemistry and Electro-Chemical Engineering (Eds Gerischer H, Tobias C W). New York: John Wiley Interscience, 1978. 285—297
[86] Sánchez C, Leiva E. J. Electroanal. Chem., 1998, 458: 183 —189
[87] Dietterle M, Will T, Kolb D M. Surf. Sci., 1995, 342: 29 —37
[88] Garcia S, Salinas D, Mayer C, Schmidt E, Staikov G, Lorenz W J. Electrochim. Acta, 1998, 43: 3007—3019
[89] Palomares F J, Serrano M, Ruiz A, Soria F, Horn K, Alonso M. Surf. Sci., 2002, 513: 283—294
[90] Mishra P, Uchihashi T, Nakayama T. Phys. Rev. B, 2010, 81: art. no. 15430
[91] Topwal D, Manju U, Pacilé D, Papagno M, Wortmann D, Bihlmayer G, Blügel S, Carbone C. Phys. Rev. B, 2012, 86: art. no. 085419
[92] Vélez P, Cuesta A, Leiva E P M, Macagno V A. Electrochem. Commun., 2012, 25: 54—57
[93] Budevski E, Staikov G, Lorenz W J. Electrochemical Phase Formation and Growth. Weinheim: WILEY-VCH Verlag GmbH, 1996. 44—140
[94] 李文坡(Li W P), 张胜涛(Zhang S T), 杨林台(Yang L T), 魏子栋(Wei Z D). 化学学报(Acta Chimica Sinica), 2009, 67(6): 529—534
[95] Giménez M C, Ramirez-Pastor A J, Leiva E P M. Surf. Sci., 2006, 600: 4741—4751
[96] Giménez M C, Del Pópolo M G, Leiva E P M. Electrochim. Acta, 1999, 45: 699—712
[97] Oviedo O A, Negre C F A, Mariscal M M, Sánchez C G, Leiva E P M. Electrochem. Commun., 2012, 16: 1—5
[98] Oviedo O A, Reinaudi L, Leiva E P M. Electrochem. Commun., 2012, 21: 14—17
[99] Bauer E, Van der Merwe J H. Phys. Rev. B, 1986, 33: 3657—3681
[100] Maestre M S, Rodríguez-Amaro R, Muñoz E, Ruiz J J, Camacho L. J. Electroanal. Chem., 1994, 373(1): 31—37
[101] Bewick A, Fleischmann M, Thirsk H R. Trans. Faraday Soc., 1962, 58(479): 2200—2216
[102] 李强(Li Q), 辜敏(Gu M), 鲜晓红(Xian X H). 化学进展(Progress in Chemistry), 2008, 20: 483—490
[103] Nicic I, Liang J, Cammarata V, Alanyalioglu M, Demir U, Shannon C. J. Phys. Chem. B, 2002, 106: 12247—12252
[104] Hamelin A. J. Electroanal. Chem., 1979, 101: 285—290
[105] Carnal D, Oden P I, Muller U, Schmidt E, Siegenthaler H. Electrochim. Acta, 1995, 40: 1223—1235
[106] Green M P, Hanson K J, Carr R, Lindau I. J. Electrochem. Soc., 1990, 137: 3493—3498
[107] Palomar-Pardavé M, Garfias-García E, Romero-Romo M, Ramírez-Silva M T, Batina N. Electrochim. Acta, 2011, 56: 10083—10092
[108] 朱文(Zhu W), 杨君友(Yang J Y), 周东祥(Zhou D X), 鲍思前(Bao S Q), 樊希安(Fan X A), 段兴凯(Duan X K). 高等学校化学学报(Chemical Journal of Chinese Universities), 2007, 28: 719—722
[109] Wang J G, Tang J, Fu Y C, Wei Y M, Chen Z B, Mao B W. Electrochem. Commun., 2007, 9: 633—638
[110] Yan J W, Sun C F, Zhou X S, Tang Y A, Mao B W. Electrochem. Commun., 2007, 9: 2716—2720
[111] Garcia S, Salinas D, Mayer C, Schmidt E, Staikov G, Lorenz W J. Electrochim. Acta, 1998, 43: 3007—3019
[112] Alanyalioglu M, Cakal H, Ozturk A E, Demir U. J. Phys. Chem. B, 2001, 105: 10588—10593
[113] Sanchez P L, Elliott J M. Analyst, 2005, 130: 715—720
[114] Batchelor-McAuley C, Wildgoose G G, Compton R G. New J. Chem., 2008, 32: 941—946
[115] Herrero E, Buller L J, Abruna H D. Chem. Rev., 2001, 101: 1897—1930
[116] Gómez R, Feliu J M. J. Electroanal. Chem., 2003, 554: 145—156
[117] Taguchi S, Aramata A. J. Electroanal. Chem., 1995, 396: 131—137
[118] Gómez R, Feliu J M, Abrua H D. J. Phys. Chem., 1994, 98: 5514—5521
[119] Takahashi S, Hasebe K, Aramata A. Electrochem. Commun., 1999, 1: 301—304
[120] Alakl A, Attard G A. J. Phys. Chem. B, 1997, 101: 4597— 4606
[121] Nishihara C, Iwata K, Tai T, Yuasa M, Sekine I, Nozoye H. Electrochem. Commun., 1999, 1: 104—107
[122] White J H, Abrua H D. J. Phys. Chem., 1990, 94: 894 —900
[123] Takahashi S, Aramata A, Nakamura M, Hasebe K, Taniguchi M, Taguchi S, Yamagishi A. Surf. Sci., 2002, 512: 37—47
[124] Aramata A, Taguchi S, Fukuda T, Nakamura M, Horányi G. Electrochim. Acta, 1998, 44: 999—1007
[125] Jerkiewicz G, Perreault F, Radovic-Hrapovic Z. J. Phys. Chem. C, 2009, 113: 12309—12316
[126] Abaci S, Zhang L S, Shannon C. J. Electroanal. Chem., 2004, 571: 169—176
[127] Vracar J, Krstajic N, Neophytides S G, Jakic J. Int. J. Hydrogen Energy, 2004, 29: 835—842
[128] Staikov G, Milchev A. Electrocrystallization in nanotechnology (Ed. Staikov G). Weinheim (Germany): WILEY-VCH Verlag GmbH & Co. KGa A, 2010. 17—20
[129] Watanabe M, Motoo S. J. Electroanal. Chem., 1975, 60: 259—266
[130] Markovic N, Ross P N. J. Electroanal. Chem., 1992, 330: 499—520
[131] Wang S R, Fedkiw P S. J. Electrochem. Soc., 1992, 139: 3151—3158
[132] Lei H W, Suh S, Gurau B, Workie B, Liu R X, Smotkin E S. Electrochim. Acta, 2002, 47: 2913—2919
[133] Lamy C, Rousseau S, Belgsir E M, Coutanceau C, Leger J M. Electrochim. Acta, 2004, 49: 3901—3908
[134] Kahyaoglu A, Beden B, Lamy C. Electrochim. Acta, 1984, 29: 1489—1492
[135] Huser H, Leger J M, Lamy C. Electrochim. Acta, 1988, 33: 1359—1365
[136] Kokoh K B, Leger J M, Lamy C. Electrochim. Acta, 1992, 37: 1333—1342
[137] Kokoh K B, Leger J M, Beden B, Huser H, Lamy C. Electrochim. Acta, 1992, 37: 1909—1918
[138] Abe T, Swain G M, Sashikata K, Itaya K. J. Electroanal. Chem., 1995, 382: 73—83
[139] Kokkinidis G, Papoutsis A, Papanastasoiu G. J. Electroanal. Chem., 1993, 359: 253—271
[140] Motoo S, Furuya N. J. Electroanal. Chem., 1982, 139: 105 —117
[141] Holze R, Fette U. J. Electroanal. Chem., 1992, 339: 247— 253
[142] Furuya N, Motoo S. J. Electroanal. Chem., 1976, 72: 165 —175
[143] Kolb D M, Leutloff D. Chem. Phys. Lett., 1978, 55(2): 264—266
[144] 张海艳(Zhang H Y), 曹春晖(Cao C H), 赵健(Zhao J), 林瑞(Lin R), 马建新(Ma J X). 催化学报(Chinese Journal of Catalysis), 2012, 33: 222—229
[145] Zhang J, Lima F H B, Shao M H, Sasaki K, Wang J X, Hanson J, Adic R R. J. Phys. Chem. B, 2005, 109: 22701—22704
[146] Sasaki K, Wang J X, Naohara H, Marinkovic N, More K, Inada H, Ad?ic R R. Electrochim. Acta, 2010, 55: 2645— 2652
[147] Zhang J L, Vukmirovic M B, Xu Y, Mavrikakis M, Adic R R. Angew. Chem. Int. Ed., 2005, 44: 2132—2135
[148] Wei Z D, Feng Y C, Li L, Liao M J, Fu Y, Sun C X, Shao Z G, Shen P K. J. Power Sources, 2008, 180(1): 84—91
[149] Wang S H, Zhang H X, Cai W B. J. Power Sources, 2012, 212: 100—104
[150] 徐政久(Xu Z J), 李作骏(Li Z J). 高等学校化学学报(Chemical Journal of Chinese Universities), 1986, 7: 345—350
[151] Gregory B W, Stickney J L. J. Electroanal. Chem. Interfacial Electrochem., 1991, 300: 543—561
[152] Wade T L, Vaidyanathan R, Happek U, Stickney J L. J. Electroanal. Chem., 2001, 500: 322—332
[153] Innocenti M, Cattarin S, Loglio F, Cecconi T, Seravalli G, Foresti M L. Electrochim. Acta, 2004, 49: 1327—1337
[154] Kim J Y, Kim Y G, Stickney J L. J. Electrochem. Soc., 2007, 154: D260—D266
[155] Thambidurai C, Kim Y G, Stickney J L. Electrochim. Acta, 2008, 53: 6157—6164
[156] Qiao Z Q, Shang W, Wang C M. J. Electroanal. Chem., 2005, 576: 171—175
[157] Flowers B H, Wade T L, Garvey J W, Lay M, Happek U, Stickney J L. J. Electroanal. Chem., 2002, 524: 273—285
[158] Vaidyanathan R, Stickney J L, Happek U. Electrochim. Acta, 2004, 49: 1321—1326
[159] Zhu W, Yang J Y, Zhou D X, Xiao C J, Duan X K. Electrochim. Acta, 2008, 53: 3579—3586
[160] Zhu W, Yang J Y, Cao X H, Bao S Q, Fan X A, Zhang T J, Cui K. Electrochim. Acta, 2005, 50: 4041—4047
[161] Kim Y G, Kim J Y, Vairavapandian D, Stickney J L. J. Phys. Chem. B, 2006, 110: 17998—18006
[162] Fayette M, Liu Y, Bertrand D, Nutariya J, Vasiljevic N, Dimitrov N. Langmuir, 2011, 27: 5650—5658
[163] Huang J F. Electroanalysis, 2008, 20: 2229—2234
[164] Stickney J L. Advances in Electrochemistry and Electrochemical Engineering (Eds. Alkire R C H, Kolb D M). Weinheim (Germany): WILEY-VCH Verlag GmbH, 2002. 1—106
[165] 翟怡(Zhai Y), 张金利(Zhang J L), 李韦(Li W), 王一平(Wang Y P). 化学进展(Progress in Chemistry), 2004, 16: 478—484
[166] Nuzzo R G, Allara D L. J. Am. Chem. Soc., 1983, 105: 4481—4484
[167] Jennings G K, Laibinis P E. J. Am. Chem. Soc., 1997, 119: 5208—5214
[168] Jennings G K, Laibinis P E. Langmuir, 1996, 12: 6173 —6175
[169] Chen I W P, Chen C C, Lin S Y, Chen C H. J. Phys. Chem. B, 2004, 108: 17497—17504
[170] Hsieh M H, Chen C H. Langmuir, 2000, 16: 1729—1733
[171] Oyamatsu D, Kuwabata S, Yoneyama H. J. Electroanal. Chem., 1999, 473: 59—67
[172] Oyamatsu D, Kanemoto H, Kuwabata S, Yoneyama H. J. Electroanal. Chem., 2001, 497: 97—105
[173] Shimazu K, Kawaguchi T, Isomura T. J. Am. Chem. Soc., 2002, 124: 652—661
[174] Kawaguchi T, Shimazu K. Chem. Lett., 2001, 1: 90—91

[1] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[2] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[3] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 赵晓竹, 李雯, 赵学瑞, 何乃普, 李超, 张学辉. MOFs在乳液中的可控生长[J]. 化学进展, 2023, 35(1): 157-167.
[6] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[7] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[8] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[9] 冯海弟, 赵璐, 白云峰, 冯锋. 纳米金属有机框架在肿瘤靶向治疗中的应用[J]. 化学进展, 2022, 34(8): 1863-1878.
[10] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[11] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[12] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[13] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[14] 张锦辉, 张晋华, 梁继伟, 顾凯丽, 姚文婧, 李锦祥. 零价铁去除水中(类)金属(含氧)离子技术发展的黄金十年(2011-2021)[J]. 化学进展, 2022, 34(5): 1218-1228.
[15] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
阅读次数
全文


摘要

欠电位沉积研究进展