English
新闻公告
More
化学进展 2013, Vol. 25 Issue (10): 1642-1647 DOI: 10.7536/PC130136 前一篇   后一篇

• 综述与评论 •

电场环境下纳米通道内水分子传输行为的MD模拟研究

李慧, 樊建芬, 宋学增, 刘东颜, 李睿, 陈素芳   

  1. 苏州大学材料与化学化工学部 苏州215123
  • 收稿日期:2013-01-01 修回日期:2013-03-01 出版日期:2013-11-12 发布日期:2013-07-18
  • 通讯作者: 樊建芬 E-mail:jffan1305@163.com
  • 基金资助:

    国家自然科学基金项目(No.21173154)资助

MD Simulations of the Water Transportation in Nanochannels under the Environments of Electric Fields

Li Hui, Fan Jianfen, Song Xuezeng, Liu Dongyan, Li Rui, Chen Sufang   

  1. College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
  • Received:2013-01-01 Revised:2013-03-01 Online:2013-11-12 Published:2013-07-18

纳米通道内的水分子传输是近年来分子动力学(MD)模拟研究的热点之一。本文综述了电场对纳米通道中水分子传输行为影响的研究成果,主要介绍了三种施加电场的方法:在通道附近加电荷、在通道两侧的水相中加离子或带电荷的氨基酸以及对纳米通道直接施加电场。并报道了各类电场对纳米通道内水的填充平衡及相变行为、水分子偶极取向、水流量、水扩散速率等产生的影响,以及加电场的各种相关应用,如水流开关、信号传输、水泵及存储器等。最后,剖析了电场环境下MD模拟研究中尚待解决的问题。

The transportation properties of water in nanochannels have been widely studied by molecular dynamics (MD) simulations. In the environments of electric fields, the behaviors of water, such as molecular dipole orientations, flux, diffusion rate, water filling/empty equilibriums and phase-transition processes, etc., are much influenced. This review surveys the methods of introducing electric fields in MD simulations, including assigning charges near tubes, adding ions or charged amino acids to the water phases on both sides of nanotubes, and directly applying electric fields through the whole nanotubes. Besides, the relevant applications using electric fields, such as flow switch, signal transmission, water pump, stable storage, etc., are also included. Finally, some issues in the relevant MD studies are presented.

Contents
1 Introduction
2 Methods of introducing electric fields in MD simulations and the relevant applications
2.1 Assigning charges on or near nanotubes
2.2 Introducing ions or charged amino acids to water phases on both sides of nanotubes
2.3 Directly applying electric fields through nanotubes
3 Influences of electric fields on the behaviors of water in nanotubes
3.1 Effects on water filling/empty equilibriums and phase-transition processes
3.2 Effects on water dipole orientations in nanotubes
3.3 Effects on water flux in nanotubes
3.4 Diffusion and permeation of water inside nanotubes under electric fields
4 Some issues in the relevant MD studies
5 Research prospects

中图分类号: 

()
[1] Denker B M, Smith B L, Kuhajda F P, Agre P. J. Biol. Chem., 1988, 263(30): 15634—15642
[2] Preston G M, Agre P. Proc. Natl. Acad. Sci. U. S. A., 1991, 88(24): 11110—11114
[3] Zeidel M L, Ambudkar S V, Smith B L, Agre P. Biochemistry, 1992, 31(33): 7436—7440
[4] Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann J B, Engel A, Fujiyoshi Y. Nature, 2000, 407(6804): 599—605
[5] Agre P. Angew. Chem. Int. Ed., 2004, 43(33): 4278—4290
[6] De Groot B L, Grubmüller H. Science, 2001, 294(5550): 2353—2357
[7] Tajkhorshid E, Nollert P, Jensen M Ø, Miercke L J W, O'Connell J, Stroud R M, Schulten K. Science, 2002, 296(5567): 525—530
[8] Jensen M Ø, Tajkhorshid E, Schulten K. Biophys. J., 2003, 85(5): 2884—2899
[9] Hub J S, Aponte-Santamaria C, Grubmüller H, De Groot B L. Biophys. J., 2010, 99(12): 97—99
[10] Raghunathan A V, Aluru N R. Phys. Rev. Lett., 2006, 97(2): art. no. 024501
[11] Wan R Z, Li J Y, Lu H J, Fang H P. J. Am. Chem. Soc., 2005, 127(19): 7166—7170
[12] Service R F. Science, 2006, 313(5790): 1088—1090
[13] Majumder M, Chopra N, Andrews R, Hinds B. Nature, 2005, 438(44): 930
[14] Holt J K, Park H G, Wang Y M, Stadermann M, Artyukhin A B, Grigoropoulos C P, Noy A, Bakajin O. Science, 2006, 312: 1034—1037
[15] Ghosh S, Sood A K, Kumar N. Science, 2003, 299(5609): 1042—1044
[16] Kumar M, Grzelakowski M, Zilles J, Clark M, Meier W. Proc. Natl. Acad. Sci. U. S. A., 2007, 104(52): 20719—20724
[17] Gong X J, Li J Y, Lu H J, Wan R Z, Li J C, Hu J, Fang H P. Nanotechnol., 2007, 2: 709—712
[18] Tu Y S, Zhou R Z, Fang H P. Nanoscale, 2010, 2: 1976—1983
[19] Li J Y, Gong X J, Lu H J, Li D, Fang H P, Zhou R Z. PNAS, 2007, 104(10): 3687—3692
[20] Zhu F Q, Schulten K. Biophys. J., 2003, 85(1): 236—244
[21] Zhu F Q, Tajkhorshid E, Schulten K. Phys. Rev. Lett., 2004, 93: art. no. 224501
[22] Thomas J A, McGaughey A J H. Phys. Rev. Lett., 2009, 102(18): art. no. 184502
[23] Kalra A, Garde S, Hummer G. PNAS, 2003, 100(18): 10175—10180
[24] Hummer G, Rasalash J C, Noworyta J P. Nature, 2001, 414: 188—190
[25] Gong X J, Fang H P. Chinese Phys. B, 2008, 17(7): 2739—2744
[26] Wan R Z, Hu J, Fang H P. Sci. China-Phys. Mech. Astron., 2012, 55(5): 751—756
[27] Hinds B. Nanotechnol., 2007, 2: 673—674
[28] Wang Y, Zhao Y J, Huang J P. Chin. Phys. B, 2012, 21(7): art. no. 076102
[29] Liu L, Qiao Y, Chen X. Appl. Phys. Lett., 2008, 92(10): art. no. 101927
[30] Huang B D, Xia Y Y, Zhao M W, Li F, Liu X D, Ji Y J, Song C. J. Chem. Phys., 2005, 122: art. no. 084708
[31] Jorge S Q, Markus P I, Ghadiri M R. J. Am. Chem. Soc., 2002, 124: 10004—10005
[32] Zhang Z Q, Ye H F, Liu Z, Ding J N, Cheng G G, Ling Z Y, Zheng Y G, Wang L, Wang J B. J. Appl. Phys., 2012, 111: art. no. 114304
[33] Dzubiella J, Hansen J P. J. Chem. Phys., 2005, 122: art. no. 234706
[34] Dzubiella J, Allen R J, Hansen J P. J. Chem. Phys., 2004, 120(11): 5001—5004
[35] Suk M E, AluruN R. Phys. Chem. Chem. Phys., 2009, 11: 8614—8619
[36] Garate J A, English N J, MacElroy J M D. J. Chem. Phys., 2009, 131: art. no. 114508
[37] English N J, Garate J A, MacElroy J M D. Carbon Nanotubes-Growth and Applications. InTech, 2011. 299—324
[38] English N J, MacElroy J M D. J. Chem. Phys., 2003, 119: 11806—11813
[39] Sigalov G, Comer J, Timp G, Aksimentiev A. Nano Lett., 2008, 8: 56—63
[40] Xu D, Phillips J C, Schulten K. J. Phys. Chem., 1996, 100(29): 12108—12121
[41] Garate J A, English N J, MacElroy J M D. Molec. Sim., 2009, 35: 3—12
[42] Wan R Z, Lu H J, Li J Y, Bao J D, Hu J, Fang H P. Phys. Chem. Chem. Phys., 2009, 11: 9898—9902
[43] Su J Y, Guo H X. ACS Nano, 2011, 5(1): 351—359
[44] Fu Z M, Luo Y, Ma J P, Wei G H. J. Chem. Phys., 2011, 134(15): art. no. 154507
[45] Wang Y, Zhao Y J, Huang J P. J. Phys. Chem. B, 2011, 115(45): 13275—13279
[46] Figueras L, Faraudo J. Tuning Water Transport in Carbon Nanotubes with A Strong Perpendicular Electricfield. (2011-06-03). .http: //www. ffn. ub. es/fises11/sites/default/files/PDF/figueras_la_peruta_luis_alfonso. pdf
[47] Figueras L, Faraudo J. Molec. Sim., 2012, 38(1): 23—25
[48] Crozier P S, Rowley R L, Holladay N B, Henderson D, Busath D D. Phys. Rev. Lett., 2001, 86(11): 2467—2470
[49] Chung S H, Allen T W, Kuyucak S. Biophys. J., 2002, 83(1): 263—277
[50] Waghe A, Rasaiah J C, Hummer G. J. Chem. Phys., 2002, 117: 10789—10795
[51] Vaitheeswaran S, Rasaiah J C, Hummer G. J. Chem. Phys., 2004, 121(16): 7955—7965
[52] Zuo G C, Shen R, Ma S J, Guo W L. J. Am. Chem. Soc., 2010, 4(1): 205—210
[53] Fang H P, Wan R Z, Gong X J, Lu H J, Li S Y. J. Phys. D: Appl. Phys., 2008, 41: art. no. 103002
[54] Zimmerli U, Gonnet P G, Walther J H, Koumoutsakos P. Nano Lett., 2005, 5(6): 1017—1022
[55] Podeszwa R, Buch V. Phys. Rev. Lett., 1999, 83(22): 4570—4573
[56] Dellago C, Naor M M, Hummer G. Phys. Rev. Lett., 2003, 90: art. no. 105902
[57] Zhu F Q, Tajkhorshid E, Schulten K. Phys. Rev. Lett., 2004, 93(22): art. no. 224501
[58] Liu B, Li X Y, Li B L, Xu B Q, Zhao Y L. Nano Lett., 2009, 9(4): 1386—1394
[59] Joseph S, Aluru N R. Phys. Rev. Lett., 2008, 101(6): art. no. 064502
[60] Berezhkovskii A, Hummer G. Phys. Rev. Lett., 2002, 89(6): art. no. 064503
[61] Liu J, Fan J F, Tang M, Cen M, Yan J F, Liu Z, Zhou W Q. J. Phys. Chem. B, 2010, 114: 12183—12192
[62] Tajkhorshid E, Zhu F Q, Schulten K. Handbook of Materials Modeling. Netherlands: Springer-Verlag, 2005. 1797—1822
[63] Portella G, Pohl P, de Groot B L. Biophys. J., 2007, 92(11): 3930—3937
[64] Portella G, de Groot B L. Biophys. J., 2009, 96(3): 925—938
[65] Jirasak W E, Markus S M, Cristiano D, Mikko K. Nanotechnol., 2010, 5: 555—557
[66] Bonthuis D J, Rinne K F, Falk K, Nadir K C, Horinek D, Nihat B A, Bocquet L, Netz R R. J. Phys.: Condens. Matter, 2011, 23: art. no. 184110
[67] Engels M, Bashford D, Ghadiri M R. J. Am. Chem. Soc., 1995, 117: 9151—9158
[68] 唐敏(Tang M), 樊建芬(Fan J F), 刘健(Liu J), 何梁君(He L J), 何珂(He K). 化学进展(Progress in Chemistry), 2010, 22(4): 648—652
[69] Gopalan P, Ponmalai K. J. Mol. Model, 2008, 14: 1147—1157
[70] Liu J, Fan J F, Tang M, Zhou W Q. J. Phys. Chem. A, 2010, 114: 2376—2383
[71] Cambre S, Schoeters B, Luyckx S, Goovaerts E, Wenseleers W. Phys. Rev. Lett., 2009, 104: art. no. 207401
[72] Qiao Y, Liu L, Chen X. Nano Lett., 2009, 9(3): 984—988
[1] 张玲, 苏扬, 王文中. 内电场与光催化性能调控[J]. 化学进展, 2016, 28(4): 415-427.
[2] 张慧捷, 王世荣, 肖殷, 李祥高. 电场响应光子晶体[J]. 化学进展, 2014, 26(10): 1690-1700.
[3] 张明辉, 翟锦. 仿生智能纳米通道在能量转换中的应用[J]. 化学进展, 2012, 24(04): 463-470.
[4] 景婧, 李轶, 刘剑, 展思辉. 电形成法制备脂质体[J]. 化学进展, 2011, 23(12): 2598-2606.
[5] 郭志军, 王家海, 胡耀辉, 汪尔康. 基于仿生膜的功能化单纳米通道在分析化学中的应用[J]. 化学进展, 2011, 23(10): 2103-2112.
[6] 马继平,陈令新,关亚风. 电动泵技术研究进展[J]. 化学进展, 2007, 19(11): 1826-1831.