English
新闻公告
More
化学进展 2013, Vol. 25 Issue (10): 1648-1655 DOI: 10.7536/PC130134 前一篇   后一篇

所属专题: 电化学有机合成

• 综述与评论 •

固体氧化物电解池NOx电化学还原技术

曹天宇, 史翊翔, 蔡宁生   

  1. 清华大学热能工程系热科学与动力工程教育部重点实验室 北京100084
  • 收稿日期:2013-01-01 修回日期:2013-04-01 出版日期:2013-11-12 发布日期:2013-07-18
  • 通讯作者: 蔡宁生 E-mail:cains@tsinghua.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.51276098)和高等学校博士点专项新教师科研基金项目(No.20110002120017)资助

Electrochemical Reduction of NOx with Solid Oxide Electrolysis Cell

Cao Tianyu, Shi Yixiang, Cai Ningsheng   

  1. Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China
  • Received:2013-01-01 Revised:2013-04-01 Online:2013-11-12 Published:2013-07-18

基于固体氧化物电解池(SOEC)的NOx电化学还原技术不使用还原剂,避免了还原剂泄露造成的二次污染,可省去庞大复杂的还原剂储存、转化系统, 是燃烧后NOx污染物排放控制的潜在技术之一。本文较为详细地介绍了NOx还原SOEC反应器的工作原理、NOx转化电极材料、结构特点和电解池组堆方式, 综述了基于SOEC的NOx电化学还原技术的发展现状,针对NOx电化学还原反应特性,总结NOx电化学还原的效率评价指标,提出电解催化电极层、多孔电解质、对称电极、NOx富集等反应器构型设计思路,并展望今后NOx电化学还原专用反应器的研发前景。

Electrochemical reduction of NOx pollutant based on solid oxide electrolysis cells (SOEC) is one of the promising technologies for post-combustion NOx emission control. NOx can be splitted with electric current instead of reductants in SOEC. This technology can avoid the risk of secondary pollution due to the leakage of reductants and can effectively reduce the sub-system for reductant storage and conversion which is usually complicated and space consuming. The working principles of SOECs for NOx reduction, the NOx conversion electrode materials, the SOEC structure features and the construction of SOEC stacks are summarized in details. The state of art, the key issues and the forefront of research are reviewed. Considering the characteristics of the NOx decomposition reaction, the performance evaluation indexes of NOx electrochemical reduction cell are proposed. Several novel concepts for practical cell designing such as additional electro-catalyst layer, porous electrolyte, symmetrical electrodes and the NOx storage agent are illustrated. The potential developing direction for NOx electrochemical reduction in SOEC is discussed.

Contents
1 Introduction
2 NOx reduction on SOECs
2.1 Basic theory
2.2 Judgments of cell performance
3 NOx reduction electrode materials
3.1 Noble metal electrodes
3.2 Mixed oxide electrodes
3.3 Perovskite electrodes
4 Art of NOx electrolyzer designing
4.1 Different types of NOx electrolyzers
4.2 Electrochemical NOx reduction stacks
5 Prospect of NOx electrolyzer researching
5.1 Mechanism of NOx electrochemical reduction
5.2 Material research
5.3 Principles of NOx electrolyzer designing

中图分类号: 

()

[1] Wark K, Warner C F, Davis W T. Air Pollution: its Origin and Control. 3rd ed. USA, Addison Wesley Longman, 1998
[2] 王睿(Wang R), 吴丹( Wu D), 赵大传( Zhao D C), 于慧(Yu H), 赵海霞(Zhao H X). 现代化工(Modern Chemical Industry), 2006, 26( Z2): 120—123
[3] Huang T J, Wang C H. Chemical Engineering Journal, 2011, 173(2): 530— 535
[4] Hansen K K. Applied Catalysis B: Environmental, 2005, 58(1/2): 33—39
[5] Hibino T, Ushiki K, Kuwahara Y. Solid State Ionics, 1997, 93(3/4): 309—314
[6] Hansen K K. Applied Catalysis B: Environmental, 2010, 100(3/4): 427—432
[7] Bredikhin S, Matsuda K, Maeda K, Awano M. Solid State Ionics, 2002, 149(3/4): 327—333
[8] Hamamoto K, Fujishiro Y, Awano M. Journal of The Electrochemical Society, 2006, 153 (11): D167—D170
[9] Pancharatnam S, Huggins R A, Mason D M. Journal of The Electrochemical Society, 1975, 122(7): 869—875
[10] Gür T M, Huggins R A. Journal of The Electrochemical Society, 1979, 126 (6): 1067—1075
[11] Walsh K J, Fedkiw P S. Solid State Ionics, 1997, 93 (1/2): 17—31
[12] Walsh K J, Fedkiw P S. Solid State Ionics, 1997, 104 (1/2): 97—108
[13] Hibino T, Inoue T, Sano M. Solid State Ionics, 2000, 130 (1/2): 19—29
[14] Hibino T, Inoue T, Sano M. Solid State Ionics, 2000, 130 (1/2): 31—39
[15] Hibino T. Chemistry Letters, 1994, 23(5): 927—930
[16] Hansen K K. Journal of Applied Electrochemistry, 2008, 38(5): 591—595
[17] Hiramatsu T, Bredikhin S I, Katayama S, Shiono O, Hamamolto K, Fujishiro Y, Awano M. Journal of Electroceramics, 2004, 13(1/3): 865—870
[18] Bredikhin S, Maeda S, Awano M. Solid State Ionics, 2001, 144(1/2): 1—9
[19] Bredikhin S, Maeda K, Awano M. Journal of The Electrochemical Society, 2001, 148 (10): D133—D138
[20] Bredikhin S, Maeda K, Awano M. Solid State Ionics, 2002, 152/153: 727— 733
[21] Bredikhin S, Abrosimova G, Aronin A, Hamamoto K, Fujishiro Y, Katayama S, Awano M. Journal of The Electrochemical Society, 2004, 151(12): J95—J99
[22] Bredikhin S, Hamamoto K, Fujishiro Y, Awano M. Ionics, 2009, 15(3): 285—299
[23] Awano M, Bredikhin S, Aronin A, Abrosimova G, Katayama S, Hiramatsu T. Solid State Ionics, 2004, 175(1/4): 605—608
[24] Aronin A, Abrosimova G, Bredikhin S, Matsuda K, Maeda K. Journal of the American Ceramic Society, 2005, 88 (5): 1180—1185
[25] Awano M, Fujishiro Y, Hamamoto K, Katayama S, Bredikhin S. International Journal of Applied Ceramic Technology, 2004, 1(3): 277—286
[26] Bredikhin S, Abrosimova S, Aronin A, Awano M. Ionics, 2006, 12(1): 33—39
[27] Hamamoto K, Fujishiro Y, Awano M. Journal of The Electrochemical Society, 2007, 154 (9): F172—F175
[28] Hamamoto K, Fujishiro Y, Awano M. Journal of The Electrochemical Society, 2006, 153(11): D167—D170
[29] Reinhardt G, Wiemhfer H D, Gpel W. Ionics, 1995, 1(1): 32—39
[30] Brstrup F, Hansen K K. Journal of Applied Electrochemistry, 2009, 39(12): 2369—2374
[31] Zhu J J, Thomas A. Applied Catalysis B: Environmental, 2009, 92 (3/4): 225—233
[32] Huang T J, Chou C L. Electrochemistry Communications, 2009, 11(2): 477—480
[33] Hwang H J, Moon J W, Moon J. Journal of the American Ceramic Society, 2005, 88(1): 79—84
[34] Traulsen M L. Electrochemical reduction of NO</em>x. Doctoral Dissertation of Technical University of Denmark, 2012
[35] Takahashi N, Shinjoh H, Iijima T, Suzuki T, Yamazaki K, Yokota K, Suzuki H, Miyoshi N, Matsumoto S, Tanizawa T, Tanaka T, Tateishi S, Kasahara K. Catalysis Today, 1996, 27(1/2): 63—69
[36] Toops T J, Smith D B, Epling E S, Parks J E, Partridge W P. Applied Catalysis B: Environmental, 2005, 58(3/4): 255—264
[37] Lesage T, Saussey J, Malo S, Hervieu M, Hedouin C, Blanchard G, Daturi M. Applied Catalysis B: Environmental, 2007, 72(1/2): 166—177
[38] MacLeod N, Williams F J, Tikhov M S, Lambert R M. Angewandte Chemie International Edition, 2005, 44(24): 3730—3732
[39] Lucas-Consuegra A, Caravaca A, Sanchez P, Dorado F, Valverde J L. Journal of Catalysis, 2008, 259(1): 54—65
[40] Lucas-Consuegra A, Caravaca A, Dorado F, Valverde J L. Catalysis Today, 2009, 146(3/4): 330—335
[41] Teraoka Y, Kanada K, Kagawa S. Applied Catalysis B: Environmental, 2001, 34 (1): 73—78
[42] Shangguan W F, Teraoka Y, Kagawa S. Applied Catalysis B: Environmental, 1998, 16 (2): 149—154
[43] Epling W S, Campbell L E, Yezerets A, Currier N W, Parks J E. Catalysis Reviews, 2004, 46(2): 163—245
[44] Prinetto F, Ghiotti G, Nova I, Lietti L, Tronconi E, Forzatti P. The Journal of Physical Chemistry B, 2001, 105 (51): 12732—12745
[45] Westerberg B, Fridell E. Journal of Molecular Catalysis A: Chemical, 2001, 165 (1/2): 249—263
[46] Simonsen V L E, Johnsen M M, Hansen K K. Topics in Catalysis, 2007, 45(1/4): 131—135
[47] Fricke R, Schreier E, Eckelt R, Richter M, Trunschke A. Topics in Catalysis, 2004, 30/31 (1/4): 193—198
[48] Lu C, Sholklapper T Z, Jacobson C P, Visco S J, Jonghe L C. Journal of The Electrochemical Society, 2006, 153 (6): A1115—A1119
[49] Jiang S P, Duan Y Y, Love J G. Journal of The Electrochemical Society, 2002, 149 (9): A1175—A1183
[50] Hansen K K, Wandel M, Liu Y L, Mogensen M. Electrochimica Acta, 2010, 55 (15): 4606—4609
[51] Thomas J M, Thomas W J. Principles and Practice of Heterogenous Catalysis. Weinheim: VCH Verlagsgesellschaft mbH, 1997
[52] Lee H Y, Cho W S, Oh S M, Wiemhofer H D, Gopel W. Journal of The Electrochemical Society, 1995, 142(8): 2659—2664
[53] Werchmeister R M L, Hansen K K, Mogensen M. Journal of The Electrochemical Society, 2010, 157 (5): 35—42
[54] Nakamura T, Sakamoto Y, Saji K, Sakata J. Sensors and Actuators B, 2003, 93 (1/3): 214—220
[55] Hibino T, Ushiki K, Kuwahara Y. Solid State Ionics, 1997, 98 (3/4): 185—190
[56] Hamamoto K, Suzuki T, Fujishiro Y. Journal of The Electrochemical Society, 2011, 158 (8): B1050—B1053
[57] Katayama S, Hiramatsu T, Shiono O, Hamamoto K, Fujishiro Y, Awano M. Journal of the Ceramic of Janpan, 2004, 112(5): S1059—S1062
[58] Yosihara Y, Shinoda W, Tominada K. Development of ECR (Electro-Chemical Reduction) System for Simultaneous Reduction of NOx and PM in Diesel Exhaust. Workshop in Catalytic and Electro-Catalytic Flue Gas Purification. Nagoya, Japan, 2011.9
[59] Werchmeister R M L. NO Conversion Electrocatalysts. Doctoral Dissertation of Technical University of Denmark, 2010
[60] Traulsen M L, Andersen K B, Hansen K K. J. Mater. Chem., 2012, 22(23): 11792—11800
[61] He Z, Andersen K B, Keel L, Nygaard F B, Menon M, Hansen K K. Ionics, 2009, 15(4): 427—431
[62] Bredikhin S, Awano M. Electrochemical Cells-New Advances in Fundamental Researches and Applications. Shao Y, Ed, InTech, 2012
[63] Hamamoto K. Electrochemical decomposition of NO</em>x. Topsφe Catalysis Forum: Catalysis in new environmental processes. Munkerupgaard, Denmark. 2009.8

[1] 王龙, 周庆萍, 吴钊峰, 张延铭, 叶小我, 陈长鑫. 基于碳纳米管的光伏电池[J]. 化学进展, 2023, 35(3): 421-432.
[2] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[3] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[4] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[5] 陈向娟, 王欢, 安伟佳, 刘利, 崔文权. 有机碳材料在光电催化系统中的作用[J]. 化学进展, 2022, 34(11): 2361-2372.
[6] 黄祺, 邢震宇. 锂硒电池研究进展[J]. 化学进展, 2022, 34(11): 2517-2539.
[7] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[8] 李祥业, 白天娇, 翁昕, 张冰, 王珍珍, 何铁石. 电纺纤维在超级电容器中的应用[J]. 化学进展, 2021, 33(7): 1159-1174.
[9] 刘小琳, 杨西亚, 王海龙, 王康, 姜建壮. 用于可充电器件的有机电极材料[J]. 化学进展, 2021, 33(5): 818-837.
[10] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
[11] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[12] 吕苏叶, 邹亮, 管寿梁, 李红变. 石墨烯在神经电信号检测中的应用[J]. 化学进展, 2021, 33(4): 568-580.
[13] 王金岭, 温玉真, 汪华林, 刘洪来, 杨雪晶. FeOCl层状材料及其插层化合物:结构、性质与应用[J]. 化学进展, 2021, 33(2): 263-280.
[14] 张一, 张萌, 佟一凡, 崔海霞, 胡攀登, 黄苇苇. 多羰基共价有机骨架在二次电池中的应用[J]. 化学进展, 2021, 33(11): 2024-2032.
[15] 吴贤文, 龙凤妮, 向延鸿, 蒋剑波, 伍建华, 熊利芝, 张桥保. 中性或弱酸性体系下锌基水系电池负极材料研究进展[J]. 化学进展, 2021, 33(11): 1983-2001.