English
新闻公告
More
化学进展 2013, Vol. 25 Issue (10): 1703-1712 DOI: 10.7536/PC130117 前一篇   后一篇

• 综述与评论 •

离子液体为新型前驱体制备含氮碳纳米材料及其应用

来庆学, 张校刚, 梁彦瑜   

  1. 南京航空航天大学材料科学与技术学院 南京210016
  • 收稿日期:2013-01-01 修回日期:2013-04-01 出版日期:2013-11-12 发布日期:2013-07-18
  • 通讯作者: 梁彦瑜 E-mail:liangyy403@126.com
  • 基金资助:

    国家自然科学基金项目(No.21273114)、江苏省自然科学基金项目(No.BK2012791)和中央高校基本科研业务费(No.1006-56XAA12068)资助

Synthesis and Application of Nitrogen-Containing Carbon Nanomaterials by Ionic Liquids as Novel Precursors

Lai Qingxue, Zhang Xiaogang, Liang Yanyu   

  1. College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • Received:2013-01-01 Revised:2013-04-01 Online:2013-11-12 Published:2013-07-18

离子液体具有绿色环保、不易挥发、加工性强、稳定性高以及结构设计性强等特点,最近几年在合成碳纳米材料中的应用引起了人们的广泛关注。虽然对离子液体的成碳机理,尤其是成碳时介孔的形成机理尚没有完整的认识, 但由其制备的碳纳米材料已初步应用于燃料电池、锂离子电池及电化学电容器等领域。本文介绍了离子液体作为新型前驱体制备含氮碳纳米材料的优势、结构要求及影响含氮量的主要因素,论述了离子液体在制备含氮碳纳米材料(包括介孔碳、碳纳米纤维和辅助碳纳米材料)中的最新研究进展,尤其是利用离子液体可实现含氮介孔碳材料的无模板法合成, 并从前驱体的交联、碳化、阴/阳离子组成和孔的缺陷等方面讨论了影响介孔结构形成的因素。

As novel precursors in fabrication of carbon nanomaterials, ionic liquids have attracted much attention due to their remarkable properties, such as low toxicity, nonvolatility, processing flexibility, high stability and flexible designability. Even though the mechanism of carbonization, especially the formation of mesopores is not clear, ionic liquid-based carbon nanomaterials have been successfully applied in different fields, such as fuel cells, lithium ion batteries and supercapacitors. In this paper the advantages and structure requirements of ionic liquids as nitrogen-containing carbon precursors and the main factors about nitrogen content have been elaborated. The recent progress of ionic liquids in synthesizing nitrogen-containing carbon nanomaterials (including mesoporous carbon, carbon nanofibers and auxiliary carbon nanomaterials) has been presented. Furthermore template-free synthesis of nitrogen-containing mesoporous carbon by employing ionic liquids as precursors has been particularly introduced. The influence factors of the formation of mesopores, such as the cross linking, carbonization conditions, composition of precursors and pore defects, have been systematically discussed.

Contents
1 Introduction
2 The requirements of the structures of ionic liquids as precursors of nitrogen-containing carbon nanomaterials and the main factors of nitrogen content
2.1 The requirements of the structures of ionic liquids
2.2 The main factors of nitrogen content
3 The synthesis of nitrogen-containing carbon nanomaterials with different structures by ionic liquids as novel precursors
3.1 The synthesis of nitrogen-containing mesoporous carbon
3.2 The synthesis of nitrogen-containing carbon fibers
3.3 The synthesis of nitrogen-containing auxiliary carbon
4 Conclusion and outlook

中图分类号: 

()
[1] David W I F, Ibberson R M, Matthewman J C, Prassides K, Dennis T J S, Hare J P, Kroto H W, Taylor R, Walton D R M. Nature, 1991, 353(6340): 147—149
[2] Pan X L, Bao X H. Acc. Chem. Res., 2011, 44(8): 553—562
[3] Geim A K, Novoselov K S. Nat. Mater., 2007, 6(3): 183—191
[4] Fu Y, Carlberg B, Lindahl N, Lindvall N, Bielecki J, Matic A, Song Y X, Hu Z L, Lai Z H, Ye L L, Sun J, Zhang Y H, Zhang Y, Liu J. Adv. Mater., 2012, 24(12): 1576—1581
[5] Fujisawa K, Tojo T, Muramatsu H, Elias A, Vega-Diaz S M, Trista-Lopez F, Kim J H, Hayashi T, Kim Y A, Endo M, Terrones M. Nanoscale, 2011, 3(10): 4359—4364
[6] Czerw R, Terrones M, Charlier J C, Blase X, Foley B, Kamalakaran R, Grobert N, Terrones H, Tekleab D, Ajayan P M, Blau W, Rühle M, Carroll D L. Nano Lett., 2001, 1(9): 457—460
[7] Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. Nat. Mater., 2009, 8(1): 76—80
[8] Wang Y, Shao Y Y, Matson D W, Li J H, Lin Y H. ACS Nano, 2010, 4(4): 1790—1798
[9] Yang W, Fellinger T P, Antonietti M. J. Am. Chem. Soc., 2010, 133(2): 206—209
[10] Yu D S, Nagelli E, Du F, Dai L M. J. Phys. Chem. Lett., 2010, 1(14): 2165—2173
[11] Jeong H M, Lee J W, Shin W H, Choi Y J, Shin H J, Kang J K, Choi J W. Nano Lett., 2011, 11(6): 2472—2477
[12] Hulicova D, Yamashita J, Soneda Y, Hatori H, Kodama M. Chem. Mater., 2005, 17(5): 1241—1247
[13] 李莉香(Li L X), 刘永长(Liu Y C), 耿新(Geng X), 安百刚(An B G). 物理化学学报(Acta Phys. Chim. Sin. ), 2011, 27(2): 443—448
[14] Xiao K, Liu Y Q, Hu P A, Yu G, Sun Y M, Zhu D B. J. Am. Chem. Soc., 2005, 127(24): 8614—8617
[15] Artyukhin A B, Stadermann M, Friddle R W, Stroeve P, Bakajin O, Noy A. Nano Lett., 2006, 6(9): 2080—2085
[16] Misewich J A, Martel R, Avouris P, Tsang J C, Heinze S, Tersoff J. Science, 2003, 300(5620): 783—796
[17] 周晓龙(Zhou X L), 柴扬(Chai Y), 李萍剑(Li P J), 潘光虎(Pan G H), 孙晖(Sun H), 申自勇(Shen Z Y), 张琦锋(Zhang Q F), 吴锦雷(Wu J L). 物理化学学报(Acta Phys. Chim. Sin. ), 2005, 21(10): 1127—1131
[18] Guldi D M, Rahman G M A, Prato M, Jux N, Qin S H, Ford W. Angew. Chem., 2005, 117(13): 2051—2054
[19] Lee J M, Park J, Lee S H, Kim H, Yoo S, Kim S O. Adv. Mater., 2011, 23(5): 629—633
[20] Paek S M, Yoo E, Honma I. Nano Lett., 2008, 9(1): 72—75
[21] Reddy A L M., Srivastava A, Gowda S R, Gullapalli H, Dubey M, Ajayan P M. ACS Nano, 2010, 4(11): 6337—6342
[22] 智林杰(Zhi L J), 方岩(Fang Y), 康飞宇(Kang F Y). 新型炭材料(New Carbon Materials), 2011, 26(1): 5—8
[23] Yuan J, Marquez A G, Reinacher J, Giordano C, Janek J, Antonietti M. Polym. Chem., 2011, 2(8): 1654—1657
[24] Fechler N, Fellinger T P, Antonietti M. Chem. Mater., 2012, 24(4), 713—719
[25] Shin W H, Jeong H M, Kim B G, Kang J K, Choi J W. Nano Lett., 2012, 12(5): 2283—2288
[26] Sun Z Z, Yan Z, Yao J, Beitler E, Zhu Y, Tour J M. Nature, 2010, 468(7323): 549—552
[27] Fellinger T P, Su D S, Engenhorst M, Gautam D, Schlogl R, Antonietti M. J. Mater. Chem., 2012, 22(45): 23996—24005
[28] Zhong M J, Natesakhawat S, Baltrus J P, Luebke D, Nulwala H, Matyjaszewski K, Kowalewski T. Chem. Commun., 2012, 48(94): 11516—11518
[29] Chen S, Bi J, Zhao Y, Yang L J, Zhang C, Ma Y W, Wu Q, Wang X Z, Hu Z. Adv. Mater., 2012, 24(41): 5593—5597
[30] Park S, Hu Y C, Hwang J O, Lee E S, Casabianca L B, Cai W, Potts J R, Ha H W, Chen S S, Oh J, Kim S O, Kim Y H, Ishii Y, Ruoff R S. Nat. Commun., 2012, 3: art. no. 638
[31] Tang Y B, Yin L C, Yang Y, Bo X H, Cao Y L, Wang H E, Zhang W J, Bello I, Lee S T, Cheng H M, Lee C S. ACS Nano, 2012, 6(3): 1970—1978
[32] Long D H, Li W, Ling L C, Miyawaki J, Mochida I, Yoon S H. Langmuir, 2010, 26(20): 16096—16102
[33] Liang J, Jiao Y, Jaroniec M, Qiao S Z. Angew. Chem. Int. Ed., 2012, 51(46): 11496—11500
[34] Parvez K, Yang S B, Hernandez Y, Winter A, Turchanin A, Feng X L, Müllen K. ACS Nano, 2012, 6: 9541—9550
[35] Paraknowitsch J P, Thomas A, Antonietti M. J. Mater. Chem., 2010, 20(32): 6746—6758
[36] Hulicova-Jurcakova D, Kodama M, Shiraishi S, Hatori H, Zhu Z H, Lu G Q. Adv. Funct. Mater., 2009, 19(11): 1800—1809
[37] Lu A H, Kiefer A, Schmidt W, Schüth F. Chem. Mater., 2003, 16(1): 100—103
[38] Saufi S M, Ismail A F. Carbon, 2004, 42(2) : 241—259
[39] Jang J, Oh J H. Chem. Commun., 2004, 7: 882—883
[40] Jang J, Li X L, Oh J H. Chem. Commun., 2004, 794—795
[41] Wu G, Mack N H, Gao W, Ma S G, Zhong R Q, Han J T, Baldwin J K, Zelenay P. ACS Nano, 2012, 6: 9764—9776
[42] Hsu C H, Wu H M, Kuo P L. Chem. Commun., 2010, 46(40): 7628—7630
[43] Li X H, Zhang J S, Chen X F, Fische A, Thomas A, Antonietti M, Wang X C. Chem. Mater., 2011, 23(19): 4344—4348
[44] Goettmann F, Fischer A, Antonietti M, Thomas A. Angew. Chem. Int. Ed., 2006, 45(27): 4467—4471
[45] Vinu A, Srinivasu P, Sawant D P, Mori T, Ariga K, Chang J S, Jhung S H, Balasubramanian V V, Hwang Y K. Chem. Mater., 2007, 19(17): 4367—4372
[46] Jin X, Balasubramanian V V, Selvan S T, Sawant D P, Chari M A, Lu G Q, Vinu A. Angew. Chem., 2009, 121(42): 8024—8027
[47] Rogers R D, Voth G A. Acc. Chem. Res., 2007, 40(11): 1077—1078
[48] Armand M, Endres F, MacFarlane D R, Ohno H, Scrosati B. Nat. Mater., 2009, 8(8): 621—629
[49] Wilkes J S, Zaworotko M J. Journal of the Chemical Society, Chem. Commun., 1992, (13): 965—967
[50] Forsyth S A, Pringle J M, MacFarlane D R. Aust. J. Chem., 2004, 57(2): 113—119
[51] Lu W, Fadeev A G, Qi B, Smela E, Mattes B R, Ding J, Spinks G M, Mazurkiewicz J, Zhou D Z, Wallace G G, MacFarlane D R, Forsyth S A, Forsyth M. Science, 2002, 297(5583): 983—987
[52] Lewandowski A, Šwiderska-Mocek A. J. Power Sources, 2009, 194(2): 601—609
[53] Rogers R D, Seddon K R. Science, 2003, 302(5646): 792—793
[54] Cooper E R, Andrews C D, Wheatley P S, Webb P B, Wormald P, Morris R E. Nature, 2004, 430(7003): 1012—1016
[55] Cole A C, Jensen J L, Ntai I, Tran K L T, Weaver K J, Forbes D C, Davis J H. J. Am. Chem. Soc., 2002, 124(21): 5962—5963
[56] Torimoto T, Tsuda T, Okazaki K I, Kuwabata S. Adv. Mater., 2010, 22(11): 1196—1221
[57] Antonietti M, Kuang D, Smarsly B, Zhou Y. Angew. Chem. Int. Ed., 2004, 43(38): 4988—4992
[58] Kim T, Lee H, Kim J, Suh K S. ACS Nano, 2010, 4(3): 1612—1618
[59] Nakashima T, Kimizuka N. J. Am. Chem. Soc., 2003, 125(21): 6386—6387
[60] Ma Z, Yu J H, Dai S. Adv. Mater., 2010, 22(2): 261—285
[61] Park M J, Lee J K, Lee B S, Lee Y W, Choi I S, Lee S G. Chem. Mater., 2006, 18(6): 1546—1551
[62] Wu B H, Hu D, Kuang Y J, Liu B, Zhang X H, Chen J H. Angew. Chem. Int. Ed., 2009, 48(26): 4751—4754
[63] Zhang H, Cui H. Langmuir, 2009, 25(5): 2604—2612
[64] Wang C M, Luo X Y, Luo H M, Jiang D E, Li H R, Dai S. Angew. Chem. Int. Ed., 2011, 50(21): 4918—4922
[65] Bates E D, Mayton R D, Ntai I, Davis J H. J. Am. Chem. Soc., 2002, 124(6): 926—927
[66] Cadena C, Anthony J L, Shah J K, Morrow T I, Brennecke J F, Maginn E J. J. Am. Chem. Soc., 2004, 126(16): 5300—5308
[67] Lee J S, Wang X Q, Luo H M, Baker G A, Dai S. J. Am. Chem. Soc., 2009, 131(13): 4596—4597
[68] Wang X Q, Dai S. Angew. Chem. Int. Ed., 2010, 49(37): 6664—6668
[69] Lee J S, Wang X Q, Luo H M, Dai S. Adv. Mater., 2010, 22(9): 1004—1007
[70] Yuan J Y, Giordano C, Antonietti M. Chem. Mater., 2010, 22(17): 5003—5012
[71] Lee J S, Luo H M, Baker G A, Dai S. Chem. Mater., 2009, 21(20): 4756—4758
[72] Fredlake C P, Crosthwaite J M, Hert D G, Aki S N V K, Brennecke J F. J. Chem. Eng. Data, 2004, 49(4): 954—956
[73] Ryoo R, Joo S H, Jun S. J. Phys. Chem. B, 1999, 103(37): 7743—7746
[74] Zhang F Q, Meng Y, Gu D, Yan Y, Yu C Z, Tu B. Zhao D Y. J. Am. Chem. Soc., 2005, 127(39): 13508—13509
[75] Fang Y, Gu D, Zou Y, Wu Z X, Li F Y, Che R C, Deng Y H, Tu B, Zhao D Y. Angew. Chem. Int. Ed., 2010, 49(43): 7987—7991
[76] Huang Y, Cai H Q, Yu T, Zhang F Q, Zhang F, Meng Y, Gu D, Wan Y, Sun X L, Tu B, Zhao D Y. Angew. Chem. Int. Ed., 2007, 46(7): 1089—1093
[77] Liang C D, Hong K L, Guiochon G A, Mays J W, Dai S. Angew. Chem. Int. Ed., 2004, 43(43): 5785—5789
[78] Liang C D, Dai S. J. Am. Chem. Soc., 2006, 128(16): 5316—5317
[79] Groenewolt M, Antonietti M. Adv. Mater., 2005, 17(14): 1789—1792
[80] Kuhn P, Forget A, Hartmann J, Thomas A, Antonietti M. Adv. Mater., 2009, 21(8): 897—901
[81] Bojdys M J, Jeromenok J, Thomas A, Antonietti M. Adv. Mater., 2010, 22(19): 2202—2205
[82] Thomas A, Fischer A, Goettmann F, Antonietti M, Muller J O, Schlogl R, Carlsson J M. J. Mater. Chem., 2008, 18(41): 4893—4908
[83] Fulvio P F, Lee J S, Mayes R T, Wang X Q, Mahurin S M, Dai S. Phys. Chem. Chem. Phys., 2011, 13(30): 13486—13491
[84] Maldonado S, Stevenson K J. J. Phys. Chem. B, 2004, 108(31): 11375—11383
[85] Bezemer G L, Bitter J H, Kuipers H P C E, Oosterbeek H, Holewijn J E, Xu X D, Kapteijn F, van Dillen A J, de Jong K P. J. Am. Chem. Soc., 2006, 128(12): 3956—3964
[86] Yang L, Cheng S, Ding Y, Zhu X B, Wang Z L, Liu M L. Nano Lett., 2012, 12(1): 321—325
[87] Kim C, Yang K S, Kojima M, Yoshida K, Kim Y J, Kim Y A, Endo M. Adv. Funct. Mater., 2006, 16(18): 2393—2397
[88] Li H S, Shen L F, Zhang X G, Nie P, Chen L, Xu K. J. Electrochem. Soc., 2012, 159(4): A426—A430
[89] Vamvakaki V, Tsagaraki K, Chaniotakis N. Anal. Chem., 2006, 78(15): 5538—5542
[90] Yang X J, Guillorn M A, Austin D, Melechko A V, Cui H T, Meyer H M, Merkulov V I, Caughman J B O, Lowndes D H, Simpson M L. Nano Lett., 2003, 3(12): 1751—1755
[91] Che G, Lakshmi B B, Martin C R, Fisher E R, Ruoff R S. Chem. Mater., 1998, 10(1): 260—267
[92] Lim S, Yoon S H, Mochida I, Jung D H. Langmuir, 2009, 25(14): 8268—8273
[93] Liang Y Y, Schwab M G, Zhi L J, Mugnaioli E, Kolb U, Feng X L, Müllen K. J. Am. Chem. Soc., 2010, 132(42): 15030—15037
[94] Lee J S, Kwon O S, Park S J, Park E Y, You S A, Yoon H, Jang J. ACS Nano, 2011, 5(10): 7992—8001
[95] Zhao Y, Cao X Y, Jiang L. J. Am. Chem. Soc., 2007, 129(4): 764—765
[96] Liu W Y, Thomopoulos S, Xia Y N. Adv. Healthc. Mater., 2012, 1(1): 10—25
[97] Greiner A, Wendorff J H. Angew. Chem. Int. Ed., 2007, 46(30): 5670—5703
[98] Chen H Y, Di J C, Wang N, Dong H, Wu J, Zhao Y, Yu J H, Jiang L. Small, 2011, 7(13): 1779—1783
[99] Chen H, Elabd Y A. Macromolecules, 2009, 42(9): 3368—3373
[100] Jacob D S, Genish I, Klein L, Gedanken A. J. Phys. Chem. B, 2006, 110(36): 17711—17714
[101] Zhao L, Hu Y S, Li H, Wang Z X, Chen L Q. Adv. Mater., 2011, 23(11): 1385—1388
[102] Paraknowitsch J P, Zhang Y J, Thomas A. J. Mater. Chem., 2011, 21(39): 15537—15543
[103] Wang Y, Zhang J S, Wang X C, Antonietti M, Li H R. Angew. Chem. Int. Ed., 2010, 49(19): 3356—3359
[1] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[2] 康美荣, 金福祥, 李臻, 宋河远, 陈静. 离子液体固载化及应用研究[J]. 化学进展, 2020, 32(9): 1274-1293.
[3] 贺丽娟, 孔德隆, 徐彩虹, 雷朝帅, 李文静, 赵英民. 聚合物前驱体3D打印制备高性能陶瓷[J]. 化学进展, 2020, 32(12): 1978-1989.
[4] 刘风国, 王博, 章莲玉, 刘爱民, 王兆文, 石忠宁. 离子液体在电沉积铝及铝合金中的应用[J]. 化学进展, 2020, 32(12): 2004-2012.
[5] 佟国宾, 鄂雷, 徐州, 马春慧, 李伟, 刘守新. 基于离子液体的炭材料制备、改性及应用[J]. 化学进展, 2019, 31(8): 1136-1147.
[6] 周伶俐, 谢瑞刚, 王林江. 层状双金属氢氧化物在电催化中的应用[J]. 化学进展, 2019, 31(2/3): 275-282.
[7] 李志勇, 冯莹, 王慧勇, 袁晓晴, 赵玉灵, 王键吉. 光响应离子液体的结构与性能调控[J]. 化学进展, 2019, 31(11): 1550-1559.
[8] 刘文巧, 李臻, 夏春谷. 酸功能化离子液体固相催化材料的制备及应用[J]. 化学进展, 2018, 30(8): 1143-1160.
[9] 程海东, 陈双俊*. 功能化离子液体在聚酯PET降解与合成中的应用[J]. 化学进展, 2017, 29(4): 443-449.
[10] 宋河远, 康美荣, 靳荣华, 金福祥, 陈静. 离子液体在羰基化反应中的应用[J]. 化学进展, 2016, 28(9): 1313-1327.
[11] 杨许召, 王军, 方云. 双阳离子液体的合成、性能及应用[J]. 化学进展, 2016, 28(2/3): 269-283.
[12] 孟艳山, 陈玉焕, 邓雨晨, 张姝明, 王桂香. 离子液体及离子液体膜在天然气净化方面的应用[J]. 化学进展, 2015, 27(9): 1324-1332.
[13] 张慧, 周雅静, 宋肖锴. 基于金属-有机骨架前驱体的先进功能材料[J]. 化学进展, 2015, 27(2/3): 174-191.
[14] 徐艺凇, 张凤香, 厉嘉云, 白赢, 肖文军, 彭家建. 聚乙二醇功能化离子液体的制备及其在有机反应中的应用[J]. 化学进展, 2015, 27(10): 1400-1412.
[15] 王雪珠, 谭忱, 李永琪, 张恒, 刘晔. 离子型膦配体及其离子型过渡金属配合物的合成和均相催化作用[J]. 化学进展, 2015, 27(1): 27-37.