English
新闻公告
More
化学进展 DOI: 10.7536/PC121261 前一篇   后一篇

• 特约稿 •

大环多胺脂质体介导的核酸转染

刘宝全1,2, 刘强1, 张骥1, 范圣第2, 余孝其*1   

  1. 1. 四川大学化学学院 绿色化学与技术教育部重点实验室 成都 610064;
    2. 大连民族学院 生物化学工程教育部重点实验室 大连 116600
  • 收稿日期:2012-12-01 修回日期:2013-02-01 出版日期:2013-08-25 发布日期:2013-06-13
  • 通讯作者: 余孝其 E-mail:xqyu@scu.edu.cn

Transfection of Nucleic Acids Mediated by Macrocyclic Polyamine-Based Liposomes

Liu Baoquan1,2, Liu Qiang1, Zhang Ji1, Fan Shengdi2, Yu Xiaoqi*1   

  1. 1. Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China;
    2. Key Laboratory of Biochemical Engineering, Ministry of Education, Dalian Nationalities University, Dalian 116600, China
  • Received:2012-12-01 Revised:2013-02-01 Online:2013-08-25 Published:2013-06-13

以大环多胺为亲水部分构建的脂质体可以有效用于核酸转染。大环多胺中带正电荷的氮原子可通过静电吸引和氢键等方式与核酸(DNA/RNA)结合。当前用于构建脂质体并进行核酸转染的大环多胺主要涉及到1, 4, 7-三氮杂环壬烷 (tacn)、1, 4, 7, 10-四氮杂环十二烷 (cyclen)、1, 4, 8, 11-四氮杂环十四烷 (cyclam)等类型,其中基于cyclen的脂质体研究较多。亲水的大环多胺头部、疏水基团尾部及连接基团的结构对脂质体的转染效率有很大影响。一些大环多胺的金属配合物除了可以作为基因转染载体,在标记、示踪等方面也有特殊作用。本文综述了基于大环多胺的两亲性分子在核酸载体方面的应用,对其构效关系进行了讨论,并对相关领域的发展做了展望。

Cationic lipid-based nanodevices were considered to be appropriate alternatives for virus-based particles in the delivery of nucleic acids, such as DNA and siRNA. Macrocyclic polyamine-based cationic lipids have great potential as gene delivery vectors. The cationic amino groups on the macrocyclic backbone can interact with nucleic acid (DNA/RNA) via electrostatic interaction and hydrogen bonds. Three types of macrocyclic polyamines including 1, 4, 7-triazacyclononane (tacn), 1, 4, 7, 10-tetraazacyclododecane (cyclen) and 1, 4, 8, 11-tetraazacyclotetradecane (cyclam) were mainly used to construct these lipidic vectors. It was found that the transfection efficiency might be largely influenced by the structures of both the hydrophobic moiety and linking group, which bridge the hydrophilic polyamine and hydrophobic tails. Some metal complexes of macrocyclic polyamines could not only achieve efficient gene delivery, but also have the potential as visibility and radiation therapy reagents. This paper reviews the application of macrocyclic polyamine-based liposomes on nucleic acids delivery. Their structure-activity relationships were discussed, and the progress in relative field was expected. Contents
1 Introduction
2 Characteristics of macrocyclic polyamines and their interaction with nucleic acids
2.1 Characteristics of macrocyclic polyamines
2.2 The interaction of macrocyclic polyamines and nucleic acids
3 Tacn-based cationic lipids for DNA delivery
3.1 Long chain modified tacn lipids
3.2 Tacn lipid containing copper(Ⅱ) ion
4 Cyclen-based cationic lipids for DNA delivery
4.1 Long chain modified cyclen lipids
4.2 Sterides modified cyclen lipids
5 Cyclen-based lipids for RNA delivery
6 Cyclen-based lipids for labelling and tracing application
7 Other lipidic macrocyclic polyamines as potential gene vectors
8 Possible mechanism of macrocyclic polyamines for protection of nucleic acids
9 Conclusions and outlook

中图分类号: 

()
[1] Chang H I, Yeh M K. Int. J. Nanomed., 2012, 7: 49-60
[2] Chandrawati R, Caruso F. Langmuir, 2012, 28(39): 13798-13807
[3] Bernitzki K, Maue M, Schrader T. Chemistry, 2012, 18(42): 13412-13417
[4] Mukai M, Maruo K, Sasaki Y, Kikuchi J. Chemistry, 2012, 18(11): 3258-3263
[5] Srinivas R, Samanta S, Chaudhuri A. Chem. Soc. Rev., 2009, 38(12): 3326-3338
[6] Li S, Goins B, Zhang L, Bao A. Bioconjugate Chem., 2012, 23: 1322-1332
[7] Miller A D. Nature, 1992, 357(6378): 455-460
[8] Bhattacharya S, Bajaj A. Chem. Commun., 2009, (31): 4632-4656
[9] 黄清东(Huang Q D). 四川大学博士学位论文(Doctoral Dissertation of Sichuan University), 2011
[10] 李硕(Li S). 四川大学博士学位论文(Doctoral Dissertation of Sichuan University), 2012
[11] Chen C H, Lin Y L, Liu Y K, He P J, Lin C M, Chiu Y H, Wu C J, Cheng T L, Liu S J, Liao K W. Int. J. Nanomed., 2012, 7: 607-621
[12] Watanabe K, Kaneko M, Maitani Y. Int. J. Nanomed., 2012, 7: 3679-3688
[13] 周立宏(Zhou L H), 王娜(Wang N), 余孝其(Yu X Q). 化学进展(Progress in Chemistry), 2007, 19(12): 1909-1918
[14] Archibald S. Annu. Rep. Prog. Chem. Sect. A, 2008, 104: 272-296
[15] 向清祥(Xiang Q X), 夏传琴(Xia C Q), 余孝其(Yu X Q), 张丽群(Zhang L Q), 谢如刚(Xie R G). 有机化学(Chinese J. Org. Chem.), 2004, 24(9): 981-986
[16] Lima L M, Esteban-Gomez D, Delgado R, Platas-Iglesias C, Tripier R. Inorg. Chem., 2012, 51(12): 6916-6927
[17] Mewis R, Archibald S. Coord. Chem Rev., 2010, 254: 1686-1712
[18] Yan H, Li Z F, Guo Z F, Lu Z L, Wang F, Wu L Z. Bioorg. Med. Chem., 2012, 20(2): 801-808
[19] Wang M Q, Zhang J, Zhang Y, Zhang D W, Liu Q, Liu J L, Lin H H, Yu X Q. Bioorg. Med. Chem. Lett., 2011, 21(19): 5866-5869
[20] Zhang Q F, Yang W H, Yi W J, Zhang J, Ren J, Luo T Y, Zhu W, Yu X Q. Bioorg. Med. Chem. Lett., 2011, 21(23): 7045-7049
[21] Cruz-Campa I, Arzola A, Santiago L, Parsons J G, Varela-Ramirez A, Aguilera R J, Noveron J C. Chem. Commun., 2007, (28): 2944-2946
[22] Huang Q D, Chen H, Zhou L H, Huang J, Wu J, Yu X Q. Chem. Biol. Drug Des., 2008, 71(3): 224-229
[23] Huang Q D, Zhong G X, Zhang Y, Ren J, Fu Y, Zhang J, Zhu W, Yu X Q. PloS One, 2011, 6(8): art. no. e23134
[24] Rajesh M, Sen J, Srujan M, Mukherjee K, Sreedhar B, Chaudhuri A. J. Am. Chem. Soc., 2007, 129(37): 11408-11420
[25] Huang Q D, Ou W J, Chen H, Feng Z H, Wang J Y, Zhang J, Zhu W, Yu X Q. Eur. J. Pharm. Biopharm., 2011, 78(3): 326-335
[26] Huang Q D, Ren J, Ou W J, Fu Y, Cai M Q, Zhang J, Zhu W, Yu X Q. Chem. Biol. Drug Des., 2012, 79(6): 879-887
[27] Huang Q D, Ren J, Chen H, Ou W J, Zhang J, Fu Y, Zhu W, Yu X Q. ChemPlusChem, 2012, 77: 584-591
[28] Liu J L, Ma Q P, Huang Q D, Yang W H, Zhang J, Wang J Y, Zhu W, Yu X Q. Eur. J. Med. Chem., 2011, 46(9): 4133-4141
[29] 陈红(Chen H), 廖易乐(Liao Y L), 黄清东(Huang Q D), 吴江(Wu J), 余孝其(Yu X Q). 高等学校化学学报(Chem. J. Chinese Universities), 2011, 32(9): 2157-2161
[30] 马丽芳(Ma L F), 黄清东(Huang Q D), 张骥(Zhang J), 吴江(Wu J), 余孝其(Yu X Q). 高等学校化学学报(Chem. J. Chinese Universities), 2011, 32(4): 874-878
[31] Islam R U, Hean J, van Otterlo W A, de Koning C B, Arbuthnot P. Bioorg. Med. Chem. Lett., 2009, 19(1): 100-103
[32] Rossiter C S, Mathews R A, Morrow J R. J. Inorg. Biochem., 2007, 101(6): 925-934
[33] Guo Z F, Yan H, Li Z F, Lu Z L. Org. Biomol. Chem., 2011, 9(19): 6788-6796
[34] Mudd S R, Trubetskoy V S, Blokhin A V, Weichert J P, Wolff J A. Bioconjugate Chem., 2010, 21(7): 1183-1189
[35] Lewis M R, Kao J Y, Anderson A L, Shively J E, Raubitschek A. Bioconjugate Chem., 2001, 12(2): 320-324
[36] Oliver M, Ahmad A, Kamaly N, Perouzel E, Caussin A, Keller M, Herlihy A, Bell J, Miller A D, Jorgensen M R. Org. Biomol. Chem., 2006, 4(18): 3489-3497
[37] Kamaly N, Kalber T, Ahmad A, Oliver M H, So P W, Herlihy A H, Bell J D, Jorgensen M R, Miller A D. Bioconjugate Chem., 2008, 19(1): 118-129
[38] Petersen A L, Binderup T, Rasmussen P, Henriksen J R, Elema D R, Kjaer A, Andresen T L. Biomaterials, 2011, 32(9): 2334-2341
[39] Galibert M, Jin Z H, Furukawa T, Fukumura T, Saga T, Fujibayashi Y, Dumy P, Boturyn D. Bioorg. Med. Chem. Lett., 2010, 20(18): 5422-5425
[40] Ostrowski A D, Lin B F, Tirrell M V, Ford P C. Mol. Pharm., 2012, 9(10): 2950-2955
[41] Rossin R, Pan D, Qi K, Turner J L, Sun X, Wooley K L, Welch M J. J. Nucl. Med., 2005, 46(7): 1210-1218
[42] Seo J W, Mahakian L M, Kheirolomoom A, Zhang H, Meares C F, Ferdani R, Anderson C J, Ferrara K W. Bioconjugate Chem., 2010, 21(7): 1206-1215
[43] Seo J W, Qin S, Mahakian L M, Watson K D, Kheirolomoom A, Ferrara K W. J. Control. Release, 2011, 151(1): 28-34
[44] Liang X, Sadler P J. Chem. Soc. Rev., 2004, 33(4): 246-266
[45] Le Bon B, Van Craynest N, Daoudi J M, Di Giorgio C, Domb A J, Vierling P. Bioconjugate Chem., 2004, 15(2): 413-423
[46] Ramana A V, Watkinson M, Todd M H. Bioorg. Med. Chem. Lett., 2008, 18(9): 3007-3010
[47] Li Z F, Chen H L, Zhang L J, Lu Z L. Bioorg. Med. Chem. Lett., 2012, 22(6): 2303-2307
[48] Labas R, Beilvert F, Barteau B, David S, Chevre R, Pitard B. Genetica, 2010, 138(2): 153-168
[49] Kimura E, Kikuta E. J. Biol. Inorg. Chem., 2000, 5(2): 139-155
[50] Lo A T, Salam N K, Hibbs D E, Rutledge P J, Todd M H. PloS One, 2011, 6(5): art. no. e17446
[1] 冯盛, 杨芳, 刘梦瑶, 范红显, 徐念. 抗癌药物多烯紫杉醇载体[J]. 化学进展, 2019, 31(2/3): 368-380.
[2] 何天稀, 梁琼麟, 王九, 罗国安. 脂质体类药物载体的微流控制备[J]. 化学进展, 2018, 30(11): 1734-1748.
[3] 汤洁, 刘仁发, 戴志飞*. 多功能脂质体递药系统[J]. 化学进展, 2018, 30(11): 1669-1680.
[4] 景婧, 李轶, 刘剑, 展思辉. 电形成法制备脂质体[J]. 化学进展, 2011, 23(12): 2598-2606.
[5] 周立宏,王娜,余孝其. 大环多胺及其金属配合物与DNA的相互作用*[J]. 化学进展, 2007, 19(012): 1909-1918.
[6] 闻建勋. 液晶的超分子系统及生物膜模拟[J]. 化学进展, 1996, 8(02): 87-.
阅读次数
全文


摘要

大环多胺脂质体介导的核酸转染