English
新闻公告
More
化学进展 DOI: 10.7536/PC121247 前一篇   

所属专题: 锂离子电池

• 综述与评论 •

锂离子电池高比容量负极用粘结剂

刘欣1, 赵海雷*1,3, 解晶莹*2, 汤卫平2, 潘延林2, 吕鹏鹏1   

  1. 1. 北京科技大学材料科学与工程学院 北京 100083;
    2. 上海空间电源研究所 上海 200245;
    3. 新能源材料与技术北京市重点实验室 北京 100083
  • 收稿日期:2012-12-01 修回日期:2013-01-01 出版日期:2013-08-25 发布日期:2013-06-13
  • 通讯作者: 赵海雷,解晶莹 E-mail:hlzhao@ustb.edu.cn;xiejingying2007@126.com
  • 基金资助:

    国家自然科学基金项目(No.21273019);国家重点基础研究发展计划(973)项目(No.2013CB934003);上海市科技人才计划项目(No.12XD1421900);上海市科委专项项目(No.10dz2250900)和上海市科委科技创新项目(No.12dz1200503)资助

Polymer Binders for High Capacity Electrode of Lithium-Ion Battery

Liu Xin1, Zhao Hailei*1,3, Xie Jingying*2, Tang Weiping2, Pan Yanlin2, Lü Pengpeng1   

  1. 1. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China;
    2. Shanghai Institute of Space Power Sources, Shanghai 200245, China;
    3. Beijing Key Lab of New Energy Materials and Technology, Beijing 100083, China
  • Received:2012-12-01 Revised:2013-01-01 Online:2013-08-25 Published:2013-06-13

随着锂离子电池向高比能量方向发展,传统的石墨负极材料将逐渐被合金、金属氧化物等高比容量负极材料所取代。高比容量负极材料在循环过程中易产生较大的体积变化,从而导致电极循环性能衰退,限制了其实际应用。除从材料本身入手外,变换粘结剂是改善高比容量负极材料电化学性能的有效途径。本文对近十年来锂离子电池高比容量负极用粘结剂的发展进行了总结。对聚偏氟乙烯(PVDF)粘结剂进行改性处理,提高其黏弹性,可以显著改善电极的电化学性能。与PVDF相比,水性羧甲基纤维素(CMC)粘结剂可以明显提高Si基电极的电化学性能。CMC用作高比容量负极材料粘结剂明显优于PVDF的原因包括其利于电极浆料分散、与电解液不反应以及能够与活性物质之间形成化学键(共价键或氢键)等。同时, CMC本身的结构参数(分子量、取代度、阳离子)、CMC加入量、浆料pH值及电极孔隙率均对CMC电极的性能具有重要影响。聚丙烯酸(PAA)及海藻酸钠粘结剂由于含有更多的羧基(-COOH)基团,对高比容量负极材料具有更好的效果。其他新型粘结剂在高比容量负极性能的提升方面也具有较大潜力。

With the development of lithium ion batteries with high energy density, the traditional graphite anode material will be replaced gradually by other materials with high specific capacity, such as alloy and metal oxides. However, these high capacity anode materials suffer from huge volume change during the cycling process, which causes the degradation of cycle performance and thus limits their application. Apart from the improvement on the active materials, the rational choice of binder is an effective way to improve the electrochemical performance of electrode. In the present paper, the development of binders used in high capacity anode in the recent decade is reviewed. With various modifications on polyvinylidene fluoride (PVDF) binder to enhance its viscoelasticity, the electrochemical properties of electrode can be improved. Compared to PVDF, the water-based carboxymentyl cellulose (CMC) binder can enhance greatly the electrochemical performance of Si-based electrodes. Better dispersion of electrode slurry, inactive to electrolyte and forming a chemical bond (covalent or hydrogen bonding) with active materials are the reasons for CMC being better than PVDF when used in the high capacity negative electrode. The structural parameters of CMC (molecular weight, degree of substitution, cationic), CMC content, pH value of the slurry and the electrode porosity have important influence on CMC electrode performance. Besides, polyacrylic acid (PAA) and Na-alginate binder are much effective in improving the cycling performance of high capacity electrode, due to their high carboxyl groups (-COOH). Other novel binders also have potential to enhance cycling performance of high capacity electrode. Contents
1 Introduction
2 Disadvantages and modification of conventional PVDF binder
3 CMC binder
3.1 Application of CMC binder in lithium-ion battery
3.2 Binding mechanism of CMC binder
3.3 Influencing factors of CMC binder
4 PAA binder
5 Na-alginate binder
6 Other novel binders
7 Conclusions

中图分类号: 

()
[1] Scrosati B, Hassoun J, Sun Y K. Energy & Environ. Sci., 2011, 4: 3287-3295
[2] Hassoun J, Derrien G, Panero S, Scrosati B. Adv. Mater., 2008, 20: 3169-3175
[3] Jia H, Gao P, Yang J, Wang J, Nuli Y, Yang Z. Adv. Energy Mater., 2011, 1: 1036-1039
[4] Ferguson P P, Todd A D W, Dahn J R. Electrochem. Commun., 2008, 10: 25-31
[5] Hassouna J, Derrienb G, Paneroa S, Scrosati B. J. Power Sources, 2008, 183: 339-343
[6] Wang J, Zhao H, He J, Wang C, Wang J. J. Power Sources, 2011, 196: 4811-4815
[7] Wang J, Zhao H, Liu X, Wang J, Wang J. Electrochim. Acta, 2011, 56: 6441-6447
[8] Chae C, Kim J H, Kim J M, Sun Y K, Lee J K. J. Mater. Chem., 2012, 22: 17870-17877
[9] Chen Y, Song B, Tang X, Lub L, Xue J. J. Mater. Chem., 2012, 22: 17656-17662
[10] Guo B, Chi M, Sun X G, Dai S. J. Power Sources, 2012, 205: 495-499
[11] Chen X, Li X, Ding F, Xu W, Xiao J, Cao Y, Meduri P, Liu J, Graff G L, Zhang J G. Nano Lett., 2012, 12: 4124-4130
[12] Zhao K, Tritsaris G A, Pharr M, Wang W L, Okeke O, Suo Z, Vlassak J J, Kaxiras E. Nano Lett., 2012, 12: 4397-4403
[13] Hassoun J, Derrien G, Panero S, Scrosati B. Electrochim. Acta, 2009, 54: 4441-4444
[14] Guo H, Zhao H, Ji X, Li X, Qiu W. Electrochim. Acta, 2007, 52: 4853-4857
[15] Cui W J, Li F, Liu H, Wang C, Xia Y. J. Mater. Chem., 2009, 19: 7202-7207
[16] 郝连升(Hao L S), 蔡宗平(Cai Z P), 李伟善(Li W S). 电源技术(Chinese Journal of Power Sources), 2010, 34 (3): 303-306
[17] 马利华(Ma H L), 傅鹏立(Fu P L), 陈小娜(Chen X N), 张胜利(Zhang S L), 宋延华(Song Y H). 电池工业(Chinese Battery Industry), 2008, 13 (3): 203-206
[18] Yang J, Takeda Y, Imanishi N, Ichikawa T, Yamamoto O. J. Power Sources, 1999, 79: 220-224
[19] Guy D, Lestriez B, Guyomard D. Adv. Mater., 2004, 16: 553-557
[20] Chen Z, Christensen L, Dahn J R. Electrochem. Commun., 2003, 5: 919-923
[21] Chen Z, Christensen L, Dahn J R. J. Electrochem. Soc., 2003, 150: A1073-A1078
[22] Chen Z, Christensen L, Dahn J R. J. Appl. Polym. Sci., 2003, 90: 1891-1899
[23] Chen Z, Christensen L, Dahn J R. J. Appl. Polym. Sci., 2004, 91: 2949-2957
[24] Xie J, Zhao X, Cao G. J. Mater. Sci. Technol., 2007, 23: 142-144
[25] Zhang X W, Wang C, Appleby A J, Little F E. J. Power Sources, 2002, 109: 136-141
[26] Li J, Christensen L, Obrovac M N, Hewitt K C, Dahn J R. J. Electrochem. Soc., 2008, 155: A234-A238
[27] Xu Y H, Yin G P, Ma Y L, Zuo P J, Cheng X Q. J. Power Sources, 2010, 195: 2069-2073
[28] Li J, Dahn H M, Krause L J, Le D B, Dahn J R. J. Electrochem. Soc., 2008, 155: A812-A816
[29] Drofenik J, Gaberscek M, Dominko R, Poulsen F W, Mogensen M, Pejovnik S, Jamnik J. Electrochim. Acta, 2003, 48: 883-889
[30] Lee J H, Lee S, Paik U, Choi Y M. J. Power Sources, 2005, 147: 249-255
[31] Lee J H, Paik U, Hackley V A, Choi Y M. J. Electrochem. Soc., 2005, 152: A1763-A1769
[32] Lee J H, Choi Y M, Paik U, Park J G. J. Electroceram., 2006, 17: 657-660
[33] Liu W R, Yang M H, Wu H C, Chiao S M, Wu N L. Electrochem. Solid-State Lett., 2005, 8: A100-A103
[34] Buqa H, Holzapfel M, Krumeich F, Veit C, Novák P. J. Power Sources, 2006, 161: 617-622
[35] Li J, Lewis R B, Dahn J R. Electrochem. Solid-State Lett., 2007, 10: A17-A20
[36] Lestriez B, Bahri S, Sandu I, Roué L, Guyomard D. Electrochem. Commun., 2007, 9: 2801-2806
[37] Munao D, Erven J W M, Valvo M, Garcia-Tamayo E, Kelder E M. J. Power Sources, 2011, 196: 6695-6702
[38] Hochgatterer N S, Schweiger M R, Koller S, Raimann P R, Wöhrle T, Wurm C, Winter M. Electrochem. Solid-State Lett., 2008, 11: A76-A80
[39] Cho S L, Gao X W, Wang J Z, Wexler D, Wang Z X, Chen L Q, Liu H K. Dalton Trans., 2011, 40: 12801-12807
[40] Chou S L, Wang J Z, Zhong C, Rahman M M, Liu H K, Dou S X. Electrochim. Acta, 2009, 54: 7519-7524
[41] Zhong C, Wang J Z, Chou S L, Konstantinov K, Rahman M, Liu H K. J. Appl. Electrochem., 2010, 40: 1415-1419
[42] Lavoie N, Malenfant P R L, Courtel F M, Abu-Lebdeh Y, Davidson I J. J. Power Sources, 2012, 213: 249-254
[43] Zhong C, Wang J Z, Gao X W, Chou S L, Konstantinov K, Liu H K. J. Nanosci. Nanotechnol. 2012, 12: 1314-1317
[44] Li C C, Wang Y W. J. Electrochem. Soc., 2011, 158: A1361-A1370
[45] Lux S F, Schappacher F, Balducci A, Passerini S, Winter M. J. Electrochem. Soc., 2010, 157: A320-A325
[46] Li J, Klöpsch R, Nowak S, Kunze M, Winter M, Passerini S. J. Power Sources, 2011, 196: 7687-7691
[47] Kim G T, Jeong S S, Joost M, Rocca E, Winter M, Passerini S, Balducci A. J. Power Sources, 2011, 196: 2187-2194
[48] Wang Z, Dupré N, Gaillot A C, Lestriez B, Martin J F, Daniel L, Patoux S, Guyomard D. Electrochim. Acta, 2012, 62: 77-83
[49] Courtel F M, Niketic S, Duguay D, Abu-Lebdeh Y, Davidson I J. J. Power Sources, 2011, 196: 2128-2134
[50] Mancini M, Nobili F, Tossici R, Wohlfahrt-Mehrens M, Marassi R. J. Power Sources, 2011, 196: 9665-9671
[51] Zaïdi W, Oumellal Y, Bonnet J P, Zhang J, Cuevas F, Latroche M, Bobet J L, Aymard L. J. Power Sources, 2011, 196: 2854-2857
[52] Xie L, Zhao L, Wan J, Shao Z, Wang F, Lv S. J. Electrochem. Soc., 2012, 159: A499-A505
[53] Ouatani L E, Dedryvère R, Ledeuil J B, Siret C, Biensan P, Desbrières J, Gonbeau D. J. Power Sources, 2009, 189: 72-80
[54] Mazouzi D, Lestriez B, Roué L, Guyomard D. Electrochem. Solid-State Lett., 2009, 12: A215-A218
[55] Bridel J S, Azaïs T, Morcrette M, Tarascon J M, Larcher D. Chem. Mater., 2010, 22: 1229-1241
[56] Beattie S D, Larcher D, Morcrette M, Simon B, Tarascon J M. J. Electrochem. Soc., 2008, 155: A158-A163
[57] Guo J, Wang C. Chem. Commun., 2010, 46: 1428-1430
[58] Guo J, Chen X, Wang C. J. Mater. Chem., 2010, 20: 5035-5040
[59] Jeong G, Lee S M, Choi N S, Kim Y U, Lee C K. Electrochim. Acta, 2011, 56: 5095-5101
[60] Li C C, Lee J T, Peng X W. J. Electrochem. Soc., 2006, 153: A809-A815
[61] Lee J H, Paik U, Hackley V A, Choi Y M. J. Power Sources, 2006, 161: 612-616
[62] Cai Z P, Liang Y, Li W S, Xing L D, Liao Y H. J. Power Sources, 2009, 189: 547-551
[63] Ui K, Kikuchi S, Mikami F, Kadoma Y, Kumagai N. J. Power Sources, 2007, 173: 518-521
[64] Komaba S, Ozeki T, Okushi K. J. Power Sources, 2009, 189: 197-203
[65] Komaba S, Okushi K, Ozeki T, Yui H, Katayama Y, Miura T, Saito T, Groulte H. Electrochem. Solid-State Lett., 2009, 12: A107-A110
[66] Komaba S, Yabuuchi N, Ozeki T, Okushi K, Yui H, Konno K, Katayama Y, Miura T. J. Power Sources, 2010, 195: 6069-6074
[67] Chong J, Xun S, Zheng H, Song X, Liu G, Ridgway P, Wang J Q, Battaglia V S. J. Power Sources, 2011, 196: 7707-7714
[68] Ui K, Towada J, Agatsuma S, Kumagai N, Yamamoto K, Haruyama H, Takeuchi K, Koura N. J. Power Sources, 2011, 196: 3900-3905
[69] Lee J T, Chu Y J, Peng X W, Wang F M, Yang C R, Li C C. J. Power Sources, 2007, 173: 985-989
[70] Li C C, Peng X W, Lee J T, Wang F M. J. Electrochem. Soc., 2010, 157: A517-A520
[71] Chen L, Xie X, Xie J, Wang K, Yang J. J. Appl. Electrochem., 2006, 36: 1099-1104
[72] Li J, Le D B, Ferguson P P, Dahn J R. Electrochim. Acta, 2010, 55: 2991-2995
[73] Magasinski A, Zdyrko B, Kovalenko I, Hertzberg B, Burtovyy R, Huebner C F, Fuller T F, Luzinov I, Yushin G. ACS Appl. Mater. Interfaces, 2010, 2: 3004-3010
[74] Komaba S, Ozeki T, Yabuuchi N, Chimomura K. Electrochemistry, 2011, 79: 6-9
[75] Komaba S, Yabuuchi N, Ozeki T, Han Z J, Shimomura K, Yui H, Katayama Y, Miura T. J. Phys. Chem. C, 2012, 116: 1380-1389
[76] Komaba S, Shimomura K, Yabuuchi N, Ozeki T, Yui H, Konno K. J. Phys. Chem. C, 2011, 115: 13487-13495
[77] Han Z J, Yabuuchi N, Shimomura K, Murase M, Yui H, Komab S. Energy & Environ. Sci., 2012, 5: 9014-9020
[78] Koo B, Kim H, Cho Y, Lee K T, Choi N S, Cho J. Angew. Chem. Int. Ed., 2012, 51: 8762-8767
[79] Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R, Luzinov I, Yushin G. Science, 2011, 334: 75-79
[80] 张晓丽(Zhang X L), 李素芝(Li S Z), 仇晓阳(Qiu X Y). 应用化工(Applied Chemical Industry), 2012, 41(2): 263-265
[81] Chockla A M, Bogart T D, Hessel C M, Klavetter K C, Mullins C B, Korgel B A. J. Phys. Chem. C, 2012, 116: 18079-18086
[82] Chockla A M, Klavetter K C, Mullins C B, Korgel B A. Chem. Mater., 2012, 24: 3738-3745
[83] Ge M Y, Rong J P, Fang X, Zhou C W. Nano Lett., 2012, 12: 2318-2323
[84] Zhao X Y, Cao M H, Hu C W. RSC Adv., 2012, 2: 11737-11742
[85] Kang W P, Zhao C H, Shen Q. Int. J. Electrochem. Sci., 2012, 7: 8194-8204
[86] Wang Z Y, Madhavi S, Lou X W. J. Phys. Chem. C, 2012, 116: 12508-12513
[87] Li J X, Zhao Y, Wang N, Ding Y H, Guan L H. J. Mater. Chem., 2012, 22: 13002-13004
[88] Choi N S, Yew K H, Choi W U, Kim S S. J. Power Sources, 2008, 177: 590-594
[89] Garsuch R R, Le D B, Garsuch A, Li J, Wang S, Farooq A, Dahn J R. J. Electrochem. Soc., 2008, 155: A721-A724
[90] Park H K, Kong B S, Oh E S. Electrochem. Commun., 2011, 13: 1051-1053
[91] Liu G, Xun S, Vukmirovic N, Song X, Olalde-Velasco P, Zheng H, Battaglia V S, Wang L, Yang W. Adv. Mater., 2011, 23: 4679-4683
[1] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[2] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[3] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[4] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[5] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[6] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[7] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[8] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[9] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[10] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.
[11] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
[12] 汪靖伦, 冉琴, 韩冲宇, 唐子龙, 陈启多, 秦雪英. 锂离子电池有机硅功能电解液[J]. 化学进展, 2020, 32(4): 467-480.
[13] 张伟, 齐小鹏, 方升, 张健华, 史碧梦, 杨娟玉. 碳在锂离子电池硅碳复合材料中的作用[J]. 化学进展, 2020, 32(4): 454-466.
[14] 陈豪登, 徐建兴, 籍少敏, 姬文晋, 崔立峰, 霍延平. MOFs衍生金属氧化物及其复合材料在锂离子电池负极材料中的应用[J]. 化学进展, 2020, 32(2/3): 298-308.
[15] 王官格, 张华宁, 吴彤, 刘博睿, 黄擎, 苏岳锋. 废旧锂离子电池正极材料资源化回收与再生[J]. 化学进展, 2020, 32(12): 2064-2074.