English
新闻公告
More
化学进展 DOI: 10.7536/PC121241 前一篇   后一篇

• 综述与评论 •

1,8-位修饰杂芴类有机光电功能材料的合成与应用

曹锦珠1, 王志祥1, 陈润锋*1,2, 李欢欢1, 郑超1, 黄维*2   

  1. 1. 南京邮电大学信息材料与纳米技术研究院 有机电子与信息显示国家 重点实验室培育基地 南京 210023;
    2. 南京工业大学 江苏-新加坡有机 电子与信息显示联合实验室 南京 211816
  • 收稿日期:2012-12-01 修回日期:2013-03-01 出版日期:2013-08-25 发布日期:2013-06-13
  • 通讯作者: 陈润锋,黄维 E-mail:iamrfchen@njupt.edu.cn;wei-huang@njupt.edu.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No.2009CB930601);国家自然科学基金项目(No.20804020,21274065);江苏省自然科学基金项目(No.BK2011751)和南京邮电大学攀登计划(NY210017)资助

Synthesis and Applications of 1,8-Functionalized Heterofluorenes for Organic Electronics

Cao Jinzhu1, Wang Zhixiang1, Chen Runfeng*1,2, Li Huanhuan1, Zheng Chao1, Huang Wei*2   

  1. 1. Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China;
    2. Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Technology, Nanjing 211816, China
  • Received:2012-12-01 Revised:2013-03-01 Online:2013-08-25 Published:2013-06-13

以氧、硫、硅、氮、磷等杂原子取代芴中sp3杂化的碳原子所形成的杂芴,不仅可以通过杂原子和π共轭体系间的相互作用有效地调控材料的电子结构,而且可以影响芴不同位置的修饰,从而得到了广泛关注。本文详细分析了1,8-位修饰杂芴的分子结构特点和光电特性,根据不同的杂原子分类论述了相关材料的合成方法和原理,综述了1,8-位修饰杂芴类材料在磷光主体材料、电致发光材料、太阳能电池材料以及有机配体材料等方面的应用进展,展望了其在有机光电材料方面的应用前景和发展趋势。

Heterofluorenes, achieved by substituting the sp3-hybridized carbon of fluorene with oxygen, sulfur, silicon, nitrogen, phosphor etc., are a series of very interesting optoelectronic materials. They have not only many highly effective ways to modify the electronic structures and properties through the particular interactions between the heteroatom and the π-conjugated system, but also show different modification properties at different substitution positions due to the influence of the heteroatoms. 1,8-Functionalization inspires new properties from widely used materials although the synthesis is always difficult. Owing to the wide spread progress of heterofluorenes and the 1,8-functionalization strategy, 1,8-functionalized heterofluorenes have received increasing attention in organic optical and electronic materials and devices recently. Herein, we summarized the basic principles of the molecular design, material synthesis, structure-property relations, and optoelectronic device applications of 1,8-functionalized heterofluorenes. The different synthetic methods of various 1,8-functionalized heterofluorenes are reviewed and presented according to different effects of different heteroatoms. Besides, the applications of 1,8-functionalized heterofluorenes as host materials for phosphorescent organic light emitting diodes, as electroluminescent materials for organic light emitting diodes, as photovoltaic materials for solar cells, and as functional ligands for organic metals are discussed in detail. Finally, the existing key problems and the future development of 1,8-functionalized heterofluorenes are also outlined and suggested. Contents
1 Introduction
2 Synthesis of 1,8-functionalized heterofluorenes
2.1 Direct synthetic methods
2.2 Indirect synthetic methods
3 Applications of 1,8-functionalized heterofluorenes
3.1 Organic electroluminescent materials
3.2 Photovoltaic materials
3.3 Ligands
4 Conclusion and outlook

中图分类号: 

()
[1] Gross M, Müller D C, Nothofer H G, Scherf U, Neher D, Brauchle C, Meerholz K, Nothofer H G. Nature, 2000, 405: 661-665
[2] Sun Y R, Giebink N C, Kanno H, Ma B W, ThompsonM E, Forrest S R. Nature, 2006, 440(7086): 908-912
[3] Lewis N S. Science, 2007, 315(5813): 798-801
[4] Kim J Y, Lee K, Coates N E. Science, 2007, 317: 222-225
[5] Brabec C J, Sariciftci N S, Hummelen J C. Adv. Funct. Mater., 2001, 11: 15-26
[6] Coakley K M, McGehee M D. Chem. Mater., 2004, 16: 4533-4542
[7] 何有军(He Y J), 李永舫(Li Y F). 化学进展(Prog. Chem.), 2009, 21(11): 2303-2318
[8] Dimitrakopoulos C D, Malenfant P R L. Adv. Mater., 2002, 14: 99-117
[9] Liu Y, Miao Q, Zhang S W, Huang X B, Zheng L F, Cheng Y X. Macromol. Chem. Phys., 2008, 209: 685-694
[10] Zeng G, Yu W L, Chua S J, Huang W. Macromolecules, 2002, 35 (18): 6907-6914
[11] Chen P, Yang G Z, Huang W. Polym. Int., 2006, 55(5): 473-490
[12] Chen R F, Zheng C, Fan Q L, Huang W. J. Comput. Chem., 2007, 28(13): 2091-2101
[13] Chen R F, Zhu R, Fan Q L, Huang W. Org. Lett., 2008, 10(13): 2913-2916
[14] Brunner K, Dijken V A, Borner H, Bastiaansen J J A M, Kiggen N M M, Langeveld B M W. J. Am. Chem. Soc., 2004, 126 (19): 6035-6042
[15] Chan K L, McKiernan M J, Towns C R, Holmes A B. J. Am. Chem. Soc., 2005, 127 (21): 7662-7663
[16] Mak C S K, Hayer A, Pascu S I, Watkins S E, Holmes A B, Kohler A, Friend R H. Chem. Commun., 2005, (7): 4708-4710
[17] Mo Y Q, Tian R Y, Shi W, Cao Y. Chem. Commun., 2005, 4925-4926
[18] Chan K L, Watkins S E, Mak C S K, McKiernan M J, Towns C R, Pascu S I, Holmes A B. Chem. Commun., 2005, (46): 5766-5768
[19] Chen J W, Cao Y. Macromol. Rapid Commun., 2007, 28: 1714-1742
[20] Yan M K, Tao Y, Chen R F, Zheng C, An Z F, Huang W. RSC Advances, 2012, 2: 7860-7867
[21] Morin J F, Leclerc M, Ades D, Siove A. Macromol. Rapid Commun., 2005, 26: 761-778
[22] Dao L H, Leclerc M, Guay J, Chevalier J W. Synth. Met., 1989, 29: 377-382
[23] Morin J F, Leclerc M. Macromolecules, 2001, 34: 4680-4682
[24] Michinobu T, Osako H, Shigehara K. Macromolecules, 2009, 42: 8172-8180
[25] Chen R F, Xie G H, Zhao Y, Zhang S L, Yin J, Liu S Y, Huang W. Org. Electron., 2011, 12: 1619-1624
[26] 许运华(Xu Y H), 彭俊彪(Peng J B), 曹镛(Cao Y). 化学进展(Prog. Chem.), 2006, 18(4): 389-398
[27] Piatek P, Lynch V M, Sessler J L. J. Am. Chem. Soc., 2004, 126: 16073-16076
[28] Chmielewski M J, Charon M, Jurczak J. Org. Lett., 2004, 6: 3501-3504
[29] Thangadurai T D, Singh N J, Hwang I C. J. Org. Chem., 2007, 72: 5461-5464
[30] Chen R F, Liu L Y, Fu H, Zheng C, Xu H, Fan Q L, Huang W. J. Phys. Chem. B, 2011, 115(2): 242-248
[31] Schwartz E B, Knobler C B, Cram D J. J. Am. Chem. Soc., 1992, 114: 10775-10784
[32] Korang J, Grither W R, McCulla R D. J. Am. Chem. Soc., 2010, 132: 4466-4476
[33] Han C M, Xie G H, Xu H, Zhang Z S, Yu D H, Zhao Y, Yan P F, Deng Z P, Li Q, Liu S Y. Chem. Eur. J., 2011, 17: 445-449
[34] Han C M, Xie G H, Li J, Zhang Z S, Xu H, Deng Z P, Zhao Y, Yan P F, Liu S Y. Chem. Eur. J., 2011, 17: 8947-8956
[35] Ren Z J, Zhang R B, Yan S K. J. Mater. Chem., 2011, 21: 7777-7781
[36] Wang L, Wu Z Y, Wong W Y, Cheah K W, Huang H. Org. Electron., 2011, 12: 595-601
[37] Saito M, Tanikawa T, Tajima T, Guo J D, Nagase S. Tetrahedron Lett., 2010, 51: 672-675
[38] Britovsek G J P, Gibson V C, Hoarau O D, Spitzmesser S K, White A J P, Williams D J. Inorg. Chem., 2003, 42: 3454-3465
[39] Gibson V C, Spitzmesser S K, White A J P, Williams D J. Dalton Trans., 2003, 13: 2718-2727
[40] Mudadu M S, Singh A N, Thummel R P. J. Org. Chem., 2008, 73: 6513-6520
[41] Michinobu T, Osako H, Shigehara K. Macromol. Rapid Commun., 2008, 29: 111-116
[42] Fujita H, Michinobu T. Chem. Phys., 2012, 213: 447-457
[43] Widhalm M, Mereiter K. Tetrahedron: Asymmetry, 2006, 17: 1355-1369
[44] Thansandote P, Lautens M. Chem. Eur. J., 2009, 15: 5874-5883
[45] Wei Y, Yoshikai N. Org. Lett., 2011, 13: 5504-5507
[46] Xu H, Fan L L. Chem. Pharm. Bull., 2008, 56: 1496-1498
[47] Ogawa S, Tajiri Y, Furukawa N. Bull. Chem. Soc. Jpn., 1991, 64: 3182-3184
[48] Wehmschulte R J, Khan M A, Hossain S I. Inorg. Chem., 2001, 40: 2756-2762
[49] Diaz A A, Young J D, Khan M A, Wehmschulte R J. Inorg. Chem., 2006, 45: 5568-5575
[50] Diaz A A, Buster B, Schomlsch D, Khan M A, Baum J C, Wehmschulte R J. Inorg. Chem., 2008, 47: 2858-2863
[51] Geramita K, McBee J, Tilley T D. J. Org. Chem., 2009, 74: 820-829
[52] Li B J, Tian S L, Fang Z, Shi Z H. Angew. Chem. Int. Ed., 2008, 47: 1115-1118
[53] Li Z P, Li C J. J. Am. Chem. Soc., 2005, 127: 3672-3673
[54] Li Z P, Li C J. J. Am. Chem. Soc., 2005, 127: 6968-6969
[55] Zhang S L, Chen R F, Yin J, Liu F, Jiang H J, Shi N E, An Z F, Ma C, Liu B, Huang W. Org. Lett., 2010, 15(12): 3438-3441
[56] 陈润锋(Chen R F), 郑超(Zheng C), 范曲立(Fan Q L), 黄维(Huang W). 化学进展(Prog. Chem.), 2010, 22(4): 696-705
[57] Romero B, Schaer M, Leclerc M, Ades D, Siove A, Zuppiroli L. Synth. Met., 1996, 80: 271-277
[58] Jenekhe S A, Yi S J. Appl. Phys. Lett., 2000, 77: 2635- 2637
[59] Boudreault P L T, Blouin N, Leclerc M. Adv. Polym. Sci., 2008, 212: 99-124
[60] Blouin N, Leclerc M. Acc. Chem. Res., 2008, 41: 1110- 1119
[61] Yamaguchi S, Shirasaka T, Akiyama S, Tamao K. J. Am. Chem. Soc., 2002, 124 (30): 8816-8817
[62] Wakamiya A, Mishima K, Ekawa K, Yamaguchi S. Chem. Commun., 2008, (5): 579-581
[63] Mo Y Q, Tian R Y, Shi W, Cao Y. Chem. Commun., 2005, (39): 4925-4926
[64] Wang E, Li C, Pieng J, Cao Y. J. Polym. Sci. PartA: Polym. Chem., 2007, 45: 4941-4949
[65] Boudreault P L T, Michaud A, Leclerc M. Macromol. Rapid Commun., 2007, 28: 2176-2179
[66] Chen R F, Fan Q L, Liu S J, Zhu R, Pu K Y, Huang W. Synth. Met., 2006, 156: 1161-1167
[67] Kobayashi S, Noguchi T, Tsubata Y, Kitano M, Doi S, Ueoka T, Nakazono A. JP2003 231741
[68] Geramita K, McBee J, Tilley T D. J. Org. Chem., 2009, 74(2): 820-829
[69] Geramita K, McBee J, Tao Y F. Chem. Commun., 2008, (41): 5107-5109
[70] Makioka Y, Hayashi T, Tanaka M J. Chem. Lett., 2004, 33(1): 44-45
[71] Chen F C, Chang S C, He G F. J. Poly. Sci. Pol. Phys., 2003, 41: 2681-2690
[72] Yin J, Zhang S L, Chen R F, Ling Q D, Huang W. Phys. Chem. Chem. Phys., 2010, 12(47): 15448-15458
[73] Han C M, Zhang Z S, Xu H, Yue S Z, Li J, Yan P R, Deng Z P, Zhao Y, Yan P F, Liu S Y. J. Am. Chem. Soc., 2012, 134: 19179-19188
[74] Forrest S R. Nature, 2004, 428: 911-918
[75] Chen J W, Cao Y. Macromol. Rapid Commun., 2007, 28: 1714-1742
[76] Whittell G R, Manners I. Adv. Mater., 2007, 19(21): 3439-3468
[77] Mudadu M S, Singh A N, Thummel R P. J. Org. Chem., 2008, 73: 6513-6520
[78] Arnold L, Norouzi-Arasi H, Wagner M, Enkelmann V, Müllen K. Chem. Commun., 2010, 47: 970-972
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[3] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[4] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[5] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[6] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[7] 林业竣, 李艳梅. 翻译后修饰Tau蛋白及其化学全/半合成[J]. 化学进展, 2022, 34(8): 1645-1660.
[8] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[9] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[10] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[11] 王鹏, 刘欢, 杨妲. 烯烃的氢甲酰化串联反应研究[J]. 化学进展, 2022, 34(5): 1076-1087.
[12] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[13] 赵聪媛, 张静, 陈铮, 李建, 舒烈琳, 纪晓亮. 基于电活性菌群的生物电催化体系的有效构筑及其强化胞外电子传递过程的应用[J]. 化学进展, 2022, 34(2): 397-410.
[14] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[15] 杨林颜, 郭宇鹏, 李正甲, 岑洁, 姚楠, 李小年. 钴基费托合成催化剂的表界面性质调控[J]. 化学进展, 2022, 34(10): 2254-2266.