English
新闻公告
More
化学进展 DOI: 10.7536/PC121237 前一篇   后一篇

• 综述与评论 •

有机自由基电池

杨小东, 瞿金清*   

  1. 华南理工大学化学与化工学院 广州 510640
  • 收稿日期:2012-12-01 修回日期:2013-03-01 出版日期:2013-08-25 发布日期:2013-06-13
  • 通讯作者: 瞿金清 E-mail:cejqqu@scut.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.20976060, 51173050)资助

Organic Radical Batteries

Yang Xiaodong, Qu Jinqing*   

  1. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
  • Received:2012-12-01 Revised:2013-03-01 Online:2013-08-25 Published:2013-06-13

有机自由基电池(ORB)是利用稳定的有机自由基聚合物作为电极活性材料的一类新型可充电电池,具有快速充电速度和良好的循环稳定性。此外,有机自由基聚合物还可制成薄膜电池。ORB不含有毒的重金属,其充放电依赖于有机自由基如氮氧自由基的氧化和还原反应,不同于锂离子电池依靠锂离子的脱嵌和嵌入。ORB为环境友好型电池,可作为笔记本电脑、智能卡、传感器和无线电频率识别标签等设备的潜在电源。本文综述了ORB的构成、特征、充放电机理以及研究进展,分析了高性能有机自由基电池的开发动态,包括通过自由基聚合物的多阶充放电特点成倍增加电池的放电容量,通过电极材料的纳米掺杂提高电池的循环稳定性,并指出了高放电容量有机自由基聚合物的设计原理、ORB的发展趋势和潜在应用领域。

The organic radical battery(ORB) is a new class of rechargeable battery, which use stable organic radical polymers as an electrode-active materials in an electrode of batteries. ORB displays a rapid charging capability and good cycleability due to the high reactivity and reversibility of the radical reaction. Additionally, organic radical polymer is appropriate for forming the flexible thin film battery. ORB contains no harmful heavy metals, it charges and discharges by the oxidation and reduction of radical species such as a nitroxide radical, which is different from that of the Li-ion battery depend on deintercalation/intercalation of the lithium ions, ORB thus opens up a new field of ubiquitous devices with environmentally friendly battery. Because of its unique features, the ORB has a wide range of potential applications as a power source including laptop PCs, smart cards, sensors, intelligent papers, radio frequency identification tags and micro-sized devices. Present paper reviews the progress of organic radical battery, including the structures and compositions, charge/discharge reaction mechanisms and characteristics. At the same time, the developments of the high performance organic radical battery are discussed including the multi-stage charge/discharge characteristics of radical polymers increased the discharge capacity of the battery and the electrode material of nano-doped to improve the battery cycle stability. The development trends of high energy-density and environmental benign organic radical battery are also pointed out. Contents
1 Introduction
2 Structural, characteristics and charge/discharge mechanism of ORB
3 Progress in organic radical battery
4 Development of high energy density of ORB
4.1 Nano-doping of electron materials
4.2 Multi-stage charge and discharge properties
4.3 Design of high capacity of ORB
5 Conclusion

中图分类号: 

()
[1] Milczarek G, Inganäs O. Science, 2012, 335:1468-1471
[2] Nishide H, Oyaizu K. Science, 2008, 319:737-738
[3] Qu J Q, Katsumata T, Satoh M, Wada J, Masuda T. Macromolecules, 2007, 40:3136-3144
[4] Qu J Q, Katsumata T, Satoh M, Wada J, Igarashi J, Mizoguchi K, Masuda T. Chem. Eur. J., 2007, 13:7965-7973
[5] Qu J Q, Katsumata T, Satoh M, Wada J, Masuda T. Polymer, 2009, 50:391-396
[6] Katsumata T, Qu J Q, Shiotsuki M, Satoh M, Wada J, Igarashi J, Mizoguchi K, Masuda T. Macromolecules, 2008, 41:1175-1183
[7] Aydín M, Esat B, Kílí C, Köse M E, Ata A, Yílmaz F. European Polymer Journal, 2011, 47:2283-2294
[8] Nakahara K, Oyaizu K, Nishide H. J. Mater. Chem., 2012, 22:13669-13673
[9] Hung M K, Wang Y H, Lin C H, Lin H C, Lee J T. J. Mater. Chem., 2012, 22:1570-1577
[10] Kato F, Kikuchi A, Okuyama T, Oyaizu K, Nishide H. Angew. Chem. Int. Ed., 2012, 51:10177-10180
[11] Xu W, Read A, Koech P K, Hu D H, Wang C M, Xiao J, Padmaperuma A B, Graff G L, Liu J, Zhang J G. J. Mater. Chem., 2012, 22:4032-4039
[12] Kim Y, Jo C, Lee J, Lee C W, Yoon S. J. Mater. Chem., 2012, 22:1453-1458
[13] Takahashi Y, Hayashi N, Oyaizu K, Honda K, Nishide H. Polym. J., 2008, 40:763-767
[14] Choi W, Harada D, Oyaizu K, Nishide H. J. Am. Chem. Soc., 2011, 133: 19839-19843
[15] Yoshihara S, Isozumi H, Kasai M, Yonehara H, Ando Y, Oyaizu K, Nishide H. J. Phys. Chem. B, 2010, 114:8335-8340
[16] Oyaizu K, Nishide H. Adv. Mater., 2009, 21:2339-2344
[17] Gao X P, Yang H X. Energy Environ. Sci., 2010, 3:174-189
[18] Nakahara K, Iwasa S, Satoh M, Morioka Y, Iriyama J, Suguro M, Hasegawa E. Chemical Physics Letters, 2002, 359:351-354
[19] Nishide H, Suga T. The Electrochemical Society Interface, Winter 2005, 14(4):32-36
[20] Nakahara K, Oyaizu K, Nishide H. Chem. Lett., 2011, 40: 222-227
[21] Iwasa S, Yasui M, Nishi T, Nakano K. NEC Technical Journal, 2012, 7:102-106
[22] 赵瑞瑞(Zhao R R), 朱利敏(Zhu L M), 杨汉西(Yang H X). 化学进展(Progress in Chemistry), 2011, 23(2):302-309
[23] Nakahara K, Iwasa S, Iriyama J, Morioka Y, Suguro M, Satoh M, Cairns E J. Electrochimica Acta, 2006, 52:921-927
[24] Cheng Y Y, Li C C, Lee J T. Electrochimica Acta, 2012, 66: 332-339
[25] Bugnon L, Morton C J H, Novak P, Vetter J, Nesvadba P. Chem. Mater., 2007, 19:2910-2914
[26] Kim J K, Ahn J H, Cheruvally G, Chauhan G S, Choi J W, Kim D S, Ahn H J, Lee S H, Song C E. Met. Mater. Int., 2009, 15:77-82
[27] Satoh M. NEC Journal of Advanced Technology, 2004, 2:262-263
[28] López Peña H A, Hernaández-Muñoz L S, Frontana-Uribe B A, González F J, González I, Frontana C, Cardoso J. J. Phys. Chem. B, 2012, 116: 5542-5550
[29] Yoshihara S, Katsuta H, Isozumi H, Kasai M, Oyaizu K, Nishide H. Journal of Power Sources, 2011, 196:7806-7811
[30] Lin C H, Chau C M, Lee J T. Polym. Chem., 2012, 3:1467-1474
[31] Suga T, Ohshiro H, Sugita S, Oyaizu K, Nishide H. Adv. Mater., 2009, 21:1627-1630
[32] Nakahara K, Iriyama J, Iwasa S, Suguro M, Satoh M, Cairns E J. Journal of Power Sources, 2007, 165:870-873
[33] Morita1 Y, Nishida S, Murata T, Moriguchi M, Ueda A, Satoh M, Arifuku K, Sato K, Takui T. Nat. Mater., 2011, 10:947-951
[34] Dai Y, Zhang Y X, Gao L, Xu G F, Xie J Y. Journal of the Electrochemical Society, 2011, 158:A291-A295
[35] Chikushi N, Yamada H, Oyaizu K, Nishide H. Sci. China Chem., 2012, 55:822-829
[36] Koshika K, Chikushi N, Sano N, Oyaizu K, Nishide H. Green Chem., 2010, 12:1573-1575
[37] Oyaizu K, Suga T, Yoshimura K, Nishide H. Macromolecules, 2008, 41:6646-6652
[38] Oyaizu K, Kawamoto T, Suga T, Nishide H. Macromolecules, 2010, 43:10382-10389
[39] Suguro M, Mori A, Iwasa S, Nakahara K, Nakano K. Macromol. Chem. Phys., 2009, 210:1402-1407
[40] Qu J Q, Fujii T, Katsumata T, Suzuki Y, Shiotsuki M, Sanda F, Satoh M, Wada J, Masuda T. J. Poly. Sci.Part A: Poly. Chem., 2007, 45:5431-5445
[41] Suguro M, Iwasa S, Kusachi Y, Morioka Y, Nakahara K. Macromol. Rapid Commun., 2007, 28: 1929-1933
[42] Suga T, Sugita S, Ohshiro H, Oyaizu K, Nishide H. Adv. Mater., 2011, 23:751-754
[43] Zhang X H, Li H Q, Li L T, Lu G L, Zhang S, Gu L N, Xia Y Y, Huang X Y. Polymer, 2008, 49:3393-3398
[44] Nesvadba P, Bugnon L, Maire P, Novak P. Chem. Mater., 2010, 22:783-788
[45] Feng J K, Cao Y L, Ai X P, Yang H X. Journal of Power Sources, 2008, 177:199-204
[46] Suga T, Pu Y J, Kasatori S, Nishide H. Macromolecules, 2007, 40:3167-3173
[47] Qu J Q, Khan F Z, Satoh M, Wada J, Hayashi H, Mizoguchi K, Masud T. Polymer, 2008, 49:1490-1496
[48] Toru K, Qu J Q, Shiotsuki M, Wada J, Satoh M, Masuda T. Organic Radical Battery Property of the Polymers Bearing TEMPO Moietites. Polymer Preprints, 56th SPSJ Symposium on Macromolecules, Japan: SPSJ, 2007. 56(1): 1428
[49] Guo W, Sua J, Li Y H, Wan L J, Guo Y G. Electrochimica Acta, 2012, 72:81-86
[1] 李文涛, 钟海, 麦耀华. 锂二次电池中的原位聚合电解质[J]. 化学进展, 2021, 33(6): 988-997.
[2] 张一, 张萌, 佟一凡, 崔海霞, 胡攀登, 黄苇苇. 多羰基共价有机骨架在二次电池中的应用[J]. 化学进展, 2021, 33(11): 2024-2032.
[3] 章胜男, 韩东梅, 任山, 肖敏, 王拴紧, 孟跃中. 有机电极材料固定化策略[J]. 化学进展, 2020, 32(1): 103-118.
[4] 王惠亚, 赵立敏, 张芳, 何丹农. 高性能锂离子二次电池隔膜[J]. 化学进展, 2019, 31(9): 1251-1262.
[5] 姚送送, 李诺, 叶红齐, 韩凯*. 二维MXene材料的制备与电化学储能应用[J]. 化学进展, 2018, 30(7): 932-946.
[6] 李亚琦, 左朋建*, 李睿楠, 马玉林, 尹鸽平*. 镁硫二次电池电解液[J]. 化学进展, 2017, 29(5): 553-562.
[7] 李骄阳, 王莉, 何向明. 磷基复合负极在二次电池中的研究进展[J]. 化学进展, 2016, 28(2/3): 193-203.
[8] 王华丽, 白莹, 陈实, 吴锋, 吴川. 室温铝二次电池及其关键材料[J]. 化学进展, 2013, 25(08): 1392-1400.
[9] 赵瑞瑞, 朱利敏, 杨汉西. 自由基聚合物——一类新颖的高性能二次电池材料[J]. 化学进展, 2011, 23(0203): 302-309.
[10] 李君涛, 方俊川, 苏航, 孙世刚. 锂离子二次电池界面过程的红外光谱研究[J]. 化学进展, 2011, 23(0203): 349-356.
[11] 陈人杰, 张海琴, 吴锋. 离子液体在电池中的应用[J]. 化学进展, 2011, 23(0203): 366-373.
[12] 赵磊, 王维坤, 王安邦, 余仲宝, 陈实, 杨裕生. 含氧有机物作为锂电池正极材料[J]. 化学进展, 2010, 22(12): 2268-2275.
[13] 沈健 彭博 陶占良 陈军. 镁二次电池正极材料和电解液研究*[J]. 化学进展, 2010, 22(0203): 515-521.
[14] 黄美荣 高鹏 李新贵. 聚萘的合成及其光电器件*[J]. 化学进展, 2010, 22(01): 113-118.
[15] 高鹏,韩家军,朱永明,张翠芬,李宁. 金属锂二次电池锂负极改性[J]. 化学进展, 2009, 21(0708): 1678-1686.
阅读次数
全文


摘要

有机自由基电池