English
新闻公告
More
化学进展 DOI: 10.7536/PC121236 前一篇   后一篇

• 综述与评论 •

基于硝基苯并呋咱的荧光探针

古振远, 徐勤超, 邢国文*   

  1. 北京师范大学化学学院 北京 100875
  • 收稿日期:2012-12-01 修回日期:2013-01-01 出版日期:2013-08-25 发布日期:2013-06-13
  • 通讯作者: 邢国文 E-mail:gwxing@bnu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 21272027)资助

Nitrobenzofurazan-Based Fluorescent Probes

Gu Zhenyuan, Xu Qinchao, Xing Guowen*   

  1. College of Chemistry, Beijing Normal University, Beijing 100875, China
  • Received:2012-12-01 Revised:2013-01-01 Online:2013-08-25 Published:2013-06-13

硝基苯并呋咱(NBD)作为一种通常从4-氯-7-硝基-苯并呋咱衍生化的荧光团,在荧光分析中具有简便、高效、灵敏度高以及检测限低等显著优点,已广泛应用于化学、生物、医药和环境等诸多研究领域。基于NBD的荧光探针是检测和识别重要的无机/有机小分子化合物、酶和蛋白质的研究热点之一。本文综述了近年来NBD作为荧光团在重金属离子(Zn2+, Cu2+ 和 Hg2+)、活性氧、DNA、细胞膜、小分子化合物(硫酚、糖类、金刚烷/胆酸、氟甲沙明/埃博霉素、双酚A、多胺、TNT和PPi)、酶和蛋白质等检测领域的新进展。在不久的将来,设计合成结构更加精巧的NBD探针分子仍将是荧光检测和生物成像领域的主要发展趋势之一。这些新颖的NBD探针分子的应用将为全面深入探索与理解复杂的生命过程提供强有力的研究工具。

Nitrobenzofurazan (NBD), a fluorophore usually derivated from 4-chloro-7-nitrobenzofurazan, has been extensively applied to a wide area of chemistry, biology, medicine and environmental science due to its simplicity, effectiveness, high sensitivity and low detection limit in the fluorometric analysis. The fluorescent probes based on NBD have become an important research focus in the sensing and recognition of important inorganic/organic molecules, protein and enzymes. This article reviews the recent progress of NBD-involved detection on heavy metal cations (Zn2+, Cu2+ and Hg2+), reactive oxygen species, DNA, cell membranes, small molecular compounds (thiophenols, sugar compounds, adamantane and bile acid derivatives, fluvoxamine and epothilone, bisphenol A, polyamine, TNT, PPi), proteins, enzymes, etc. In the future, the design and synthesis of more exquisite and complex probes based on NBD is still a flourishing research area for fluorescent detection and biochemical imaging, and will provide a particularly applicable tool to study the intricate microcosmic process of life. Contents
1 Introduction
2 Fluorescence detection of heavy metal ions
2.1 Fluorescent probes for Hg2+
2.2 Fluorescent probes for Zn2+
2.3 Fluorescent probes for Cu2+
3 Fluorescence detection of reactive oxygen species
4 Fluorescent probe for DNA
5 Fluorescence detection of membranes
6 Fluorescence detection of small molecules
6.1 Fluorescence detection of thiophenols
6.2 Fluorescence detection of sugar compounds
6.3 Fluorescence detection of adamantane and bile acid derivatives
6.4 Fluorescence detection of fluvoxamine and epothilone
6.5 Fluorescence detection of bisphenol A
6.6 Fluorescence detection of polyamine
6.7 Fluorescence detection of TNT
6.8 Fluorescence detection of PPi
7 Fluorescence detection of proteins and enzymes
8 Fluorescence detection related to the polarity of micro-environment
9 Conclusion and outlook

中图分类号: 

()
[1] Ramachandram B, Samanta A. J. Phys. Chem. A, 1998, 102: 10579-10587
[2] Ghosh P B, Whitehouse M W. Biochem. J., 1968, 108: 155-156
[3] Uchiyama S, Santa T, Okiyama N, Fukushima T, Imai K. Biomed. Chromatogr., 2001, 15: 295-318
[4] Imai K, Uzu S, Kanda S, Baeyens W R G. Anal. Chim. Acta, 1994, 290: 3-20
[5] Imai K, Uzu S, Toyo'oka T. J. Pharm. Biomed. Anal., 1989, 7: 1395-1403
[6] Ruan Y B, Maisonneuve S, Xie J. Dyes Pigments, 2011, 90: 239-244
[7] Xie Z J, Wang K, Zhang C L, Yang Z H, Chen Y C, Guo Z J, Lu G Y, He W J. New J. Chem., 2011, 35: 607-613
[8] Kim S H, Kim J S, Park S M, Chang S K. Org. Lett., 2006, 8: 371-374
[9] Liu K, Zhou Y, Yao C. Inorg. Chem. Commun., 2011, 14: 1798-1801
[10] 郏佳(Jia J), 唐茜(Tang X), 何颖芳(He Y F), 张梦雨(Zhang M Y), 邢国文(Xing G W). 有机化学(Chin. J. Org. Chem.), 2012, 32: 1803-1811
[11] Woodroofe C C, Lippard S J. J. Am. Chem. Soc., 2003, 125: 11458-11459
[12] Chen X Y, Shi J, Li Y M, Wang F L, Wu X, Guo Q X, Liu L. Org. Lett., 2009, 11: 4426-4429
[13] Jia J, Gu Z Y, Li R C, Huang M H, Xu C S, Wang Y F, Xing G W, Huang Y S. Eur. J. Org. Chem., 2011, 24: 4609-4615
[14] Jia J, Li R C, Tang X, He Y F, Zhang M Y, Zhang Y, Xing G W. Org. Biomol. Chem., 2012, 10: 6279-6286
[15] Maruyama S, Kikuchi K, Hirano T, Urano Y, Nagano T. J. Am. Chem. Soc., 2002, 124: 10650-10651
[16] Komatsu K, Urano Y, Kojima H, Nagano T. J. Am. Chem. Soc., 2007, 129: 13447-13454
[17] Hanaoka K, Muramatsu Y, Urano Y, Terai T, Nagano T. Chem. Eur. J., 2010, 16: 568-572
[18] Jiang W, Fu Q Q, Fan H Y, Wang W. Chem. Commun., 2008, 259-261
[19] Qian F, Zhang C L, Zhang Y M, He W J, Gao X, Hu P, Guo Z J. J. Am. Chem. Soc., 2009, 131: 1460-1468
[20] Xu Z C, Kim G H, Han S J, Jou M J, Lee C, Shin I, Yoon J Y. Tetrahedron, 2009, 65: 2307-2312
[21] Liu S R, Wu S P. J. Fluoresc., 2011, 21: 1599-1605
[22] Heyne B, Beddie C, Scaiano J C. Org. Biomol. Chem., 2007, 5: 1454-1458
[23] Thiagarajan V, Rajendran A, Satake H, Nishizawa S, Teramae N. ChemBioChem., 2010, 11: 94-100
[24] Pajk S, Garvas M, Strancar J, Pecar S. Org. Biomol. Chem., 2011, 9: 4150-4159
[25] Jiang H, O’Neil E J, DiVittorio K M, Smith B D. Org. Lett., 2005, 7: 3013-3016
[26] Jiang W, Fu Q Q, Fan H Y, Ho J, Wang W. Angew. Chem. Int. Ed., 2007, 46: 8445-8448
[27] Yoshioka K, Takahashi H, Homma T, Saito M, Oh K B, Nemoto Y, Matsuoka H. Biochim. Biophys. Acta, 1996, 1289: 5-9
[28] Rouach N, Koulakoff A, Abudara V, Willeecke K, Giaume C. Science, 2008, 322: 1551-1555
[29] Yamada K, Saito M, Matsuoka H, Inagaki N. Nat. Protoc., 2007, 2: 753-762
[30] Gandhi G K, Cruz N F, Ball K K, Theus S A, Dienel G A. J. Neurochem., 2009, 110: 857-869
[31] Tsytsarev V, Maslov K I, Yao J J, Parameswar A R, Demchenko A V, Wang L V. J. Neurosci. Methods., 2012, 203: 136-140
[32] Watanabe S. Carbohydr. Res., 2008, 343: 2325-2328
[33] Schwarzmann G, Wendeler M, Sandhoff K. Glycobiology, 2005, 15: 1302-1311
[34] Gege C, Schumacher G, Rothe U, Schmidt R R, Bendas G. Carbohydr. Res., 2008, 343: 2361-2368
[35] Ikeda H, Murayama T, Ueno A. Org. Biomol. Chem., 2005, 3: 4262-4267
[36] Darwish I A, Amer S M, Abdine H H, Al-Rayes L I. J. Fluoresc., 2009, 19: 463-471
[37] Gertsch J, Feyen F, Butzberger A, Gerber B, Pfeiffer B, Altmann K H. ChemBioChem., 2009, 10: 2513-2521
[38] Maezawa N, Tsuchikawa H, Katsumura S, Kubo T, Imaoka S. Bioorg. Med. Chem. Lett., 2007, 17: 5121-5124
[39] Guminski Y, Grousseaud M, Cugnasse S, Brel V, Annereau J P, Vispe S, Guibaud N, Barret J M, Bailly C, Imbert T. Bioorg. Med. Chem. Lett., 2009, 19: 2474-2477
[40] Geng J L, Liu P, Liu B H, Guan G J, Zhang Z P, Han M Y. Chem. Eur. J., 2010, 16: 3720-3727
[41] Yang S J, Feng G Q, Williams N H. Org. Biomol. Chem., 2012, 10: 5606-5612
[42] Su G Y, Liu Z P, Xie Z J, Qian F, He W J, Guo Z J. Dalton Trans., 2009, 7888-7890
[43] Dursina B, Reents R, Delon C, Wu Y W, Kulharia M, Thutewohl M, Veligodsky A, Kalinin A, Evstifeev V, Ciobanu D, Szedlacsek S E, Waldmann H, Goody R S, Alexandrov K. J. Am. Chem. Soc., 2006, 128: 2822-2835
[44] Nava P, Cecchini M, Chirico S, Gordon H, Morley S, Manor D, Atkinson J. Bioorg. Med. Chem., 2006, 14: 3721-3736
[45] Qian J H, Morley S, Wilson K, Nava P, Atkinson J, Manor D. J. Lipid Res., 2005, 46: 2072-2082
[46] Wichmann O, Wittbrodt J, Schultz C. Angew. Chem. Int. Ed., 2006, 45: 508-512
[47] Borisenko G G, Kapralov A A, Tyurin V A, Maeda A, Stoyanovsky D A, Kagan V E. Biochemisty, 2008, 47: 13699-13710
[48] Filice M, Romero O, Guisan J M, Palomo J M. Org. Biomol. Chem., 2011, 9: 5535-5540
[49] Taliani S, Simorini F, Sergianni V, Motta C L, Settimo F D, Cosimelli B, Abignente E, Greco G, Novellino E, Rossi L, Gremigni V, Spinetti F. J. Med. Chem., 2007, 50: 1-407
[50] Tanliani S, Pozzo E D, Bellandi M, Bendinelli S, Pugliesi I, Simorini F, Motta C L, Salerno S, Marini A M, Settimo F D, Cosimelli B, Greco G, Novellino E, Martini C. J. Med. Chem., 2010, 53: 4085-4093
[51] Noel S, Guillon L, Schalk I J, Mislin G L A. Org. Lett., 2011, 13: 844-847
[52] Zhao Y F, Pirrung M C, Liao J Y. Mol. Biosyst., 2012, 8: 879-887
[53] Bernal-Perez L F, Prokai L, Ryu Y. Anal. Biochem., 2012, 428: 13-15
[54] 赵莉(Zhao L), 阎云(Yan Y), 黄建滨(Huang J B). 物理化学学报(Acta Phys. Chim. Sin.), 2010, 26: 840-849.
[55] Mazeres S, Schram V, Tocanne J F, Lopez A. Biophy. J., 1996, 71: 327-335
[56] Saha S, Samanta, A. J. Phys. Chem. A, 1998, 102: 7903-7912
[57] Yadav S P, Ahmad A, Ghosh J K. Biochim. Biophys. Acta, 2007, 1768: 1574-1582
[58] Verma R, Ghosh J K. Biochimie, 2011, 93: 1001-1011
[1] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[2] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[3] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[4] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[5] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[6] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[7] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[8] 王慧悦, 胡欣, 胡玉静, 朱宁, 郭凯. 酶催化原子转移自由基聚合[J]. 化学进展, 2022, 34(8): 1796-1808.
[9] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[10] 张锦辉, 张晋华, 梁继伟, 顾凯丽, 姚文婧, 李锦祥. 零价铁去除水中(类)金属(含氧)离子技术发展的黄金十年(2011-2021)[J]. 化学进展, 2022, 34(5): 1218-1228.
[11] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[12] 高耕, 张克宇, 王倩雯, 张利波, 崔丁方, 姚耀春. 金属草酸盐基负极材料——离子电池储能材料的新选择[J]. 化学进展, 2022, 34(2): 434-446.
[13] 王亚奇, 吴强, 陈俊玲, 梁峰. 狄尔斯-阿尔德反应催化剂[J]. 化学进展, 2022, 34(2): 474-486.
[14] 林刚, 张媛媛, 刘健. 仿生光(电)催化NADH再生[J]. 化学进展, 2022, 34(11): 2351-2360.
[15] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
阅读次数
全文


摘要

基于硝基苯并呋咱的荧光探针