English
新闻公告
More
化学进展 DOI: 10.7536/PC121223 前一篇   后一篇

• 综述与评论 •

室温铝二次电池及其关键材料

王华丽, 白莹*, 陈实, 吴锋, 吴川*   

  1. 北京理工大学化工与环境学院 环境科学与工程北京市重点实验室 北京 100081
  • 收稿日期:2012-12-01 修回日期:2013-01-01 出版日期:2013-08-25 发布日期:2013-06-13
  • 通讯作者: 白莹,吴川 E-mail:membrane@bit.edu.cn;chuanwu@bit.edu.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No.2009CB220100)和教育部“新世纪优秀人才支持计划”项目(No.NCET-12-0047)资助

Ambient Temperature Rechargeable Aluminum Batteries and Their Key Materials

Wang Huali, Bai Ying*, Chen Shi, Wu Feng, Wu Chuan*   

  1. Beijing Key Laboratory of Environmental Science and Engineering, School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing 100081, China
  • Received:2012-12-01 Revised:2013-01-01 Online:2013-08-25 Published:2013-06-13

金属铝是一种很高的能量载体, 是开发电池的理想电极材料。由于铝在二次电池中的应用体系主要集中在高温熔盐铝二次电池,其熔盐电解质需要高温,对环境要求苛刻,成本较高难于维护,限制了铝二次电池的发展。近年来,室温离子液体作为二次电池的电解液的研究,使得室温铝二次电池的开发与应用成为可能,人们开始研究基于离子液体电解液的室温有机熔盐二次电池,采用铝或者嵌铝化合物作为电极材料,离子液体作为电解液,与传统的二次电池相比具有很多优点。本文介绍了近年来室温铝二次电池相关的研究和应用新进展,包括金属铝负极的优化和铝枝晶的抑制,可嵌脱铝负极材料的设计,可用于铝二次电池的过渡金属氧化物和导电聚合物正极材料及其性能,以及电解液的要求和离子液体作电解液的优势,并指出了可能存在的问题以及相应的解决办法。

Aluminum is a high energy carrier and an ideal electrode material for batteries. At present, the application of aluminum in rechargeable batteries are mainly high temperature molten salt batteries, all these rechargeable aluminum batteries use molten salt electrolyte, which must work at high temperature. The use of high temperature molten salt electrolyte limited the development of rechargeable aluminum batteries. Recently, researchers begin to use ambient temperature ionic liquids as electrolyte of rechargeable aluminum batteries, which can prevent the formation of oxide films on the aluminum surface as well as eliminate H2 evolution. This new battery system working at mild condition, which adopts aluminum or aluminum intercalation compounds as electrodes and ionic liquids as electrolytes, has many advantages compared to conventional rechargeable batteries. This paper introduces related researches and applications of ambient temperature rechargeable aluminum batteries in recent years, including the optimizing of aluminum anode and inhibition of dendrite, the design of aluminum anode materials that can intercalate and release aluminum ion, the performance of polymer cathode materials and transition metal oxide cathode materials, the request of electrolytes, and advantages of ionic liquid used as electrolyte. Furthermore, possible existent problems and corresponding solutions are proposed. Contents
1 Introduction
2 Optimize and design of anode material in ambient temperature rechargeable aluminum batteries
2.1 Activation and anti-corroding of the aluminum anode
2.2 Dendrite formation and inhibition
2.3 Aluminum anode materials that can intercalate and deintercalate aluminum ion
3 Electrolyte for ambient temperature rechargeable aluminum batteries
3.1 The request of electrolytes
3.2 The advantages of ionic liquids used as electrolyte
3.3 The application of ionic liquids
4 Cathode materials used in ambient temperature rechargeable aluminum batteries
4.1 Polymer cathode materials
4.2 Transition metal oxide cathode materials
5 Conclusion

中图分类号: 

()
[1] 李庆峰(Li Q F), 邱竹贤(Qiu Z X). 东北大学学报: 自然科学版(Journal of Northeastern University (Natural Science Edition)), 2001, 22(2): 130-132
[2] 王兆文(Wang Z W), 李延祥(Li Y X), 李庆峰(Li Q F), 高炳亮(Gao B L), 邱竹贤(Qiu Z X). 有色金属(Non-Ferrous Metal), 2002, 54 (1): 19-23
[3] Hulot M. Compt. Rend., 1855, 40: 148-152
[4] Sargent D E. US 2554447, 1951
[5] Zaromb S. J. Electrochem. Soc., 1962, 109: 1125-1137
[6] Trevethan L, Bockstie D, Zaromb S. J. Electrochem. Soc., 1963, 110: 267-271
[7] Miller S E. 国外舰船技术(船电类)(Foreign Ship Technology (Marine Electric Class)), 1980, 4: 39-40
[8] Giner J, Holleck G. Aluminum-Chlorine Battery. Final Report by Tyco Laboratories Inc., On contract No. NAS 12-688, March 1970 (NASA-CR-1541)
[9] Knutz B C, Hjuler H A, Berg R W. J. Electrochem. Soc., 1993, 140(12): 3380-3390
[10] Takami N, Koura N. J. Electrochem. Soc., 1989, 136: 730-740
[11] Gifford P R, Palmisano J B. J. Electrochem. Soc., 1988, 135: 650-654
[12] Gifford P R, Palmisano J B. J. Electrochem. Soc., 1987, 134: 610-614
[13] 李庆峰(Li Q F), 邱竹贤(Qiu Z X). 有色矿冶(Non-Ferrous Mining and Metallurgy), 1994, 2: 25-31
[14] 陈建华(Chen J H). 表面技术(Surface Technology), 1994, 23(4): 159-165
[15] Hasvold O, Johnsen K H, Mollestad O. J. Power Sources, 1999, 80: 254-260
[16] Anderson G E, Middletown R I. US 3953239, 1976
[17] Hunter J A, Scamans G M, O'Callaghan W B. US 4942100, 1990
[18] Hunter J A, Hamlen R P. US 5376471, 1994
[19] 蔡年生(Cai N S). 舰船科学技术(Ship Science and Technology), 2003, 25(1): 58-62
[20] 奚碚华(Xi P H), 夏天(Xia T). 鱼雷技术(Torpedo Technology), 2005, 13(2): 7-13
[21] 李学海(Li X H), 王为(Wang W), 吕霖娜(Lv L N), 伊宇(Yi Y). 电源技术(Chinese Journal of Power Sources), 2006, 30(9): 760-763
[22] Stokes J J. US 2838591, 1958
[23] 杨林(Yang L). 四川日化(Sichuan Chemical), 1991, 2: 62-67
[24] Takami N. US 20030219650, 2003
[25] Hidesato S, Takami N. US 20030219650A1, 2003
[26] Hasvold Q, Størkersen N. J. Power Sources, 2001, 96: 252-258
[27] Zaromb S. US 3554810, 1967
[28] Marsh C L, Seebach G L, VanZee J W, Bessette R R, Meunier H G, Medeiros M G. US 5296429, 1994
[29] 温兆银(Wen Z Y). 上海节能(Shanghai Energy Conservation), 2007, 2: 7-11
[30] Licht S L. US 5431881, 1995
[31] Licht S L. US 4828492, 1989
[32] Licht S L, Peramunage D. US 5648183, 1997
[33] Peramunage D, Dillon R, Licht S L. J. Power Sources, 1993, 3(45): 311-323
[34] Licht S L. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 134: 241-248
[35] Licht S L, Marsh C L. US 5472807, 1995
[36] Licht S L. US 6387569 B1, 2002
[37] Hjuler H A, Berg R W, Bierrum N J. Secondary Aluminium-Metal Sulfide Batteries with Molten NaAlCl4 Electrolyte, Proceedings of the 14th International Power Sources Symposium, 1985. 1-21
[38] Brown G M, US 12/895487, 2010
[39] Jayaprakash N, Das S K, Archer L A. Chem. Commun., 2011, 47: 12610-12612
[40] Li Q F, Bjerrum N J. J. Power Sources, 2002, l10: 1-10
[41] Albert I J, Kulandainathan M A, Ganesan M. J. Appl. Electrochem., 1989, 19: 547-559
[42] Despic A, Radosevic J, Dabic P. Electrochem. Acta, 1990, 35: 1743-1746
[43] Tuck C D S, Hunter J A, Scomans G M. J. Electrochem. Soc., 1987, 134: 2970-2981
[44] Kliskic M, Radosevic J, Aljinovic L J. J. Appl. Electrochem., 1994, 5: 814-818
[45] Gorbunova K M, Adzhemyan T A. Compt. Rend. Acad. Sci. USSR, 1934, 1: 564-567
[46] Diggle J W, Despic A R, Bockris J O M. J. Electrochem. Soc., 1969, 116: 1503-1514
[47] Li Q F, Bjerrum N J. J. Power Sources, 2002, 110: 1-10
[48] Grjotheim K, Matiasovsky K. Acta Chem. Scand., 1980, 34: 666-670
[49] Fellner P, Chrenkova-Paucirova M, Matiasovsky K. Surface Tech., 1981, 14: 101-108
[50] Austin L W, Vucich M G, Smith E J. Electrochem. Tech., 1963, 14: 267-272
[51] Hayashi T. Proceedings of the 1st International Symposium on Molten Salt Chem. Techn., Kyoto, 1983. 53
[52] Stafford G R. J. Electrochem. Soc., 1989, 136: 635-639
[53] Carpio R A, King L A. J. Electrochem. Soc., 1981, 128: 1510-1517
[54] Li Q F, Hjuler H A, Berg R W, Bjerrum N J. J. Electrochem. Soc., 1990, 137: 2794-2798
[55] Tran T T, Obrovac M N. J. Electrochem. Soc., 2011, 158 (12): A1411-A1416
[56] 赵宇光(Zhao Y G). CN101764253A, 2010
[57] Shao H B, Wang J M, Zhang Z. Materials Chemistry and Physics, 2002, 77: 305-309
[58] 陈祝平(Chen Z P). 特种电镀技术(Special Plating Technology). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2004. 78-102
[59] 郭粤湘(Guo Y X). 新技术新工艺(New Technology & New Process), 1990, 1: 40-41
[60] Vestergaard B, Bjerrum N J, Petrushina I, Hiuler H A, Berg R W, Begtrup M. J. Electrochem. Soc., 1993, 140: 3108-3113
[61] 岳竞慧(Yue J H), 高利珍(Gao L Z), 岳秀萍(Yue X P), 赵宇光(Zhao Y G). 能源与节能(Energy and Energy Conservation), 2011, 2: 68-70
[62] 陈昕(Chen X), 司士辉(Si S H), 张漪丽(Zhang Y L). 应用化学(Chinese Journal of Applied Chemistry), 2004, 21(6): 613-616
[63] Kazuhiro N, Eishi E, Kenichi T. US 5554458, 1996
[64] Atsushi O. US 7524587, 2010
[65] Giner J, Holleck G L. J. Electrochem. Soc., 1972, 119: 1158-1165
[66] Weaving J S, Orchard S W. J. Power Sources, 1991, 36: 537-546
[67] Greenberg J. US P3635765, 1972
[68] Buzzeli D. US P3650834, 1972
[69] Reddy L, Porubszky I, Molnar I. J. Power Sources, 1974, 5: 559-564
[70] Knutz B C, Hjuler H A, Berg R W, Bjerrum N J. J. Electrochem. Soc., 1993, 140: 3374-3379
[71] Knutz B C, Hjuler H A, Berg R W, Bjerrum N J. J. Electrochem. Soc., 1993, 140: 3380-3390
[72] Berretoni M, Tossici R, Zamponi S, Marassi R, Mamantov G. J. Electrochem. Soc., 1993, 140: 969-974
[73] Koura N. J. Electrochem. Soc., 1980, 127: 1529-1531
[74] Koura N, Inoue T. Denki Kagaku, 1981, 49: 113-118
[75] Takhashi S, Koura N. J. Electroanal. Chem., 1985, 188: 245-255
[76] Takami N, Koura N. Electrochim. Acta, 1988, 33: 69-74
[77] Takami N, Koura N. J. Electrochem. Soc., 1993, 140: 928-932
[78] Li Q F, Hjuler H A, Berg R W, Bjerrum N J. J. Electrochem. Soc., 1990, 137(2): 593-598
[79] Li Q F, Hjuler H A, Berg R W, Bjerrum N J. J. Electrochem. Soc., 1991, 138(3): 763-766
[80] 赵宇光(Zhao Y G), 黄兆丰(Huang Z F). CN 101764258A, 2010
[1] 唐向春 陈家祥 刘利娜 廖世军. 具有三维特殊形貌/纳米结构的Pt基电催化剂的研究进展[J]. 化学进展, 0, (): 0-0.
[2] 任文臣, 崔志华, 王文涛, 唐炳涛. 生物质纤维衍生碳材料在锂硫电池正极中的应用[J]. 化学进展, 0, (): 6-0.
[3] 常增花, 王建涛, 武兆辉, 赵金玲, 卢世刚. 高浓度锂盐电解液[J]. 化学进展, 2018, 30(12): 1960-1974.
[4] 杨凯, 章胜男, 韩东梅, 肖敏, 王拴紧*, 孟跃中*. 多功能锂硫电池隔膜[J]. 化学进展, 2018, 30(12): 1942-1959.
[5] 梁茜, 王诚, 雷一杰, 刘亚迪, 赵波, 刘锋. 金属有机框架材料在质子交换膜燃料电池中的潜在应用[J]. 化学进展, 2018, 30(11): 1770-1783.
[6] 鲍长远, 韩家军*, 程瑾宁, 张瑞涛. 石墨烯-聚苯胺类超级电容器复合电极材料[J]. 化学进展, 2018, 30(9): 1349-1363.
[7] 吕宪伟, 胡忠攀, 赵挥, 刘玉萍, 袁忠勇. 自支撑型过渡金属磷化物电催化析氢反应研究[J]. 化学进展, 2018, 30(7): 947-957.
[8] 姚送送, 李诺, 叶红齐, 韩凯*. 二维MXene材料的制备与电化学储能应用[J]. 化学进展, 2018, 30(7): 932-946.
[9] 邵奕嘉, 黄斌, 刘全兵, 廖世军. 三元镍钴锰正极材料的制备及改性[J]. 化学进展, 2018, 30(4): 410-419.
[10] 吴帅锦, 杨娟玉, 于冰, 方升, 武兆辉, 史碧梦. 微/纳复合结构硅基负极材料[J]. 化学进展, 2018, 30(2/3): 272-285.
[11] 池滨, 侯三英, 刘广智, 廖世军*. 高性能高功率密度质子交换膜燃料电池膜电极[J]. 化学进展, 2018, 30(2/3): 243-251.
[12] 程新兵, 张强*. 金属锂枝晶生长机制及抑制方法[J]. 化学进展, 2018, 30(1): 51-72.
[13] 李敏, 王艳丽, 吴晓燕, 段磊, 张春明, 何丹农. 锂离子电池富锂材料中离子掺杂、表面包覆、表面氧空位修饰的作用机理及其联合机制[J]. 化学进展, 2017, 29(12): 1526-1536.
[14] 李秀娟, 曹云鹤, 华康, 王畅, 徐卫林, 方东. 钒氧基电极材料特点及其改性方法[J]. 化学进展, 2017, 29(10): 1260-1272.
[15] 赵旭, 王克青, 李博, 李长青, 林雨青*. 微电极制备、表面修饰及活体/单细胞电分析应用[J]. 化学进展, 2017, 29(10): 1173-1183.
阅读次数
全文


摘要

室温铝二次电池及其关键材料