English
新闻公告
More
化学进展 DOI: 10.7536/PC121213 前一篇   后一篇

• 金属和非金属蛋白 •

铜/镍金属伴侣蛋白的研究进展

阳新明1, 许德晨2, 程天凡1, 郗照勇2, 赵林泓2, 刘扬中*2, 孙红哲*1   

  1. 1. 香港大学化学系 香港;
    2. 中国科学技术大学化学系 合肥 230026
  • 收稿日期:2012-12-01 修回日期:2013-01-01 出版日期:2013-04-24 发布日期:2013-04-09
  • 通讯作者: 刘扬中, 孙红哲 E-mail:liuyz@ustc.edu.cn; hsun@hku.hk
  • 基金资助:

    国家自然科学基金项目(No.21171156); 香港研究资助局优配研究计划 (HKU7038/08P, HKU7049/09P)和国家自然科学基金委员会及香港研究资助局联合研究计划 (N_HKU75209)资助

Recent Progress of Copper and Nickel Chaperones

Yang Xinming1, Xu Dechen2, Cheng Tianfan1, Xi Zhaoyong2, Zhao Linhong2, Liu Yangzhong*2, Sun Hongzhe*1   

  1. 1. Department of Chemistry, The University of Hong Kong, Pok Fu Lam Road, Hong Kong, China;
    2. Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
  • Received:2012-12-01 Revised:2013-01-01 Online:2013-04-24 Published:2013-04-09

含铜/镍金属酶的成熟需要一系列的铜/镍金属伴侣蛋白,这些铜/镍金属伴侣蛋白分别参与铜或者镍的转运,对维持细胞体内铜/镍金属平衡至关重要,同时金属酶完成金属催化活性中心的组装也依赖于这类伴侣蛋白。近年来关于铜/镍金属蛋白的研究取得可喜的进展,这些研究为进一步认识体内铜/镍平衡体系提供了重要依据。本文首先简要地介绍铜的摄取和细胞内平衡体系,接着着重介绍三个重要的铜转运蛋白Atox1、Cox17和CCS关于结构和功能的进展,以及这些铜转运蛋白和药物相互作用的机理。然后详细介绍在氢化酶和脲酶成熟路径中参与了镍的摄取、调节、转运和存储,维持细胞内镍金属平衡的镍伴侣蛋白,并介绍了脲酶、氢化酶这两条成熟路径之间的联系。

Maturation of copper- and nickel-containing enzymes relies on a battery of metallochaperones, which play an important role in the transport and trafficking of Cu or Ni, and assist the assembly of metallocenter in metalloenzymes. Significant progress on the structure and function of metallochaperones has been made in the past years, improving our understanding on the homeostasis of Cu/Ni in cells. Recent progress of Cu/Ni chaperones is summarized in this review. The blueprint of Cu import and homeostasis is briefly discussed followed by the structural and functional aspects of selected Cu chaperones, i.e. Atox1, Cox17 and CCS. Moreover, the putative relationships between Cu chaperones and drugs are discussed. The second part focuses on the maturation of hydrogenase and urease, in which a series of Ni chaperones interacts with each other to achieve the homeostasis of nickel. Selected structural complexes and in vivo functional study of the chaperones are emphasized, the “cross-talk” between the two maturation pathways is presented.

Contents
1 Introduction
2 Copper chaperones
2.1 Cu import and homeostasis
2.2 Atox1
2.3 Cox17
2.4 CCS
2.5 Copper chaperones in relation to drugs
3 Nickel chaperones
3.1 Ni importer, regulator and storage
3.2 Ni chaperones for the maturation of urease
3.3 Ni chaperones for the maturation of hydrogenase
3.4 Cross-talk between the maturation of urease and hydrogenase
4 Conclusion

中图分类号: 

()

[1] Banci, L, Bertini I, Ciofi-Baffoni S, Janicka A, Martinelli M, Kozlowski H, Palumaa P. J. Biol. Chem., 2008, 283: 7912-7920
[2] Banci L, Bertini I, McGreevy K S, Rosato A. Nat. Prod. Rep., 2010, 27: 695-710
[3] Linder M C, Wooten L, Cerveza P, Cotton S, Shulze R, Lomeli N. Am. J. Clin. Nutr., 1998, 67: 965S-971S
[4] Tanzi R E, Petrukhin K, Chernov I, Pellequer J L, Wasco W, Ross B, Romano D M, Parano E, Pavone L, Brzustowicz L M, Devoto M, Peppercorn J, Bush A I, Sternlieb I, Pirastu M, Gusella J F, Evgrafov O, Penchaszadeh G K, Honig B, Edelman I S, Soares M B, Scheinberg I H, Gilliam T C. Nat. Genet., 1993, 5: 344-350
[5] Petrukhin K, Fischer S G, Pirastu M, Tanzi R E, Chernov I, Devoto M, Brzustowicz L M, Cayanis E, Vitale E, Russo J J, Matseoane D, Boukhgalter B, Wasco W, Figus A L, Loudianos J, Cao A, Sternlieb I, Evgrafov O, Parano E, Pavone L, Warburton D, Ott J, Penchaszadeh G K, Scheinberg I H, Gilliam T C. Nat. Genet., 1993, 5: 338-343
[6] Rosen D R. Nature, 1993, 364: 362-362
[7] Atwood C S, Moir R D, Huang X D, Scarpa R C, Bacarra N M E, Romano D M, Hartshorn M K, Tanzi R E, Bush A I. J. Biol. Chem., 1998, 273: 12817-12826
[8] Selkoe D J. Trends Cell Biol., 1998, 8: 447-453
[9] Nielsen F H. Biol. Trace Elem. Res., 1990, 26/27: 599-611
[10] Brown P H, Welch R M, Cary E E. Plant Physiol., 1987, 85: 801-803
[11] Eskew D L, Welch R M, Cary E E. Science, 1983, 222: 621-623
[12] Covacci A, Telford J L, Del Giudice G, Parsonnet J, Rappuoli R. Science, 1999, 284: 1328-1333
[13] Van Vliet A H M, Kuipers E J, Waidner B, Davies B J, de Vries N, Penn C W, Vandenbroucke-Grauls C, Kist M, Bereswill S, Kusters J G. Infect. Immun., 2001, 69: 4891-4897
[14] Waldron K J, Robinson N J. Nat. Rev. Microbiol., 2009, 7: 25-35
[15] Finney L A, O'Halloran T V. Science, 2003, 300: 931-936
[16] Kim B E, Nevitt T, Thiele D J. Nat. Chem. Biol., 2008, 4: 176-185
[17] Maryon E B, Molloy S A, Zimnicka A M, Kaplan J H. BioMetals, 2007, 20: 355-364
[18] De Feo C J, Aller S G, Unger V M. BioMetals, 2007, 20: 705-716
[19] De Feo C J, Aller S G, Siluvai G S, Blackburn N J, Unger V M. Proc. Natl. Acad. Sci. U.S.A., 2009, 106: 4237-4242
[20] Tsigelny I F, Sharikov Y, Greenberg J P, Miller M A, Kouznetsova V L, Larson C A, Howell S B. Cell Biochem. Biophys., 2012, 63: 223-234
[21] Yang L, Huang Z W, Li F. J. Pept. Sci., 2012, 18: 449-455
[22] Haas K L, Putterman A B, White D R, Thiele D J, Franz K J. J. Am. Chem. Soc., 2011, 133: 4427-4437
[23] Robinson N J, Winge D R. Annu. Rev. Biochem., 2010, 79: 537-562
[24] Itoh S, Ozumi K, Kim H W, Nakagawa O, McKinney R D, Folz R J, Zelko I N, Ushio-Fukai M, Fukai T. Free Radic. Biol. Med., 2009, 46: 95-104
[25] Lin S J, Pufahl R A, Dancis A, OHalloran T V, Culotta V C. J. Biol. Chem., 1997, 272: 9215-9220
[26] Pufahl R A, Singer C P, Peariso K L, Lin S J, Schmidt P J, Fahrni C J, Culotta V C, PennerHahn J E, OHalloran T V. Science, 1997, 278: 853-856
[27] Boal A K, Rosenzweig A C. Chem. Rev., 2009, 109: 4760-4779
[28] Rodriguez-Granillo A, Wittung-Stafshede P. Biochemistry, 2009, 48: 960-972
[29] Hussain F, Olson J S, Wittung-Stafshede P. Proc. Natl. Acad. Sci. U.S.A., 2008, 105: 11158-11163
[30] Hussain F, Rodriguez-Granillo A, Wittung-Stafshede P. J. Am. Chem. Soc., 2009, 131: 16371-16373
[31] Badarau A, Dennison C. J. Am. Chem. Soc., 2011, 133: 2983-2988
[32] Itoh S, Kim H W, Nakagawa O, Ozumi K, Lessner S M, Aoki H, Akram K, McKinney R D, Ushio-Fukai M, Fukai T. J. Biol. Chem., 2008, 283: 9157-9167
[33] Muller P A J, Klomp L W J. Int. J. Biochem. Cell Biol., 2009, 41: 1233-1236
[34] Lutsenko S, Barnes N L, Bartee M Y, Dmitriev O Y. Physiol. Rev., 2007, 87: 1011-1046
[35] Yatsunyk L A, Rosenzweig A C. J. Biol. Chem., 2007, 282: 8622-8631
[36] Banci L, Bertini I, Ciofi-Baffoni S, Kozyreva T, Zovo K, Palumaa P. Nature, 2010, 465: 645-648
[37] Achila D, Banci L, Bertini I, Bunce J, Ciofi-Baffoni S, Huffman D L. Proc. Natl. Acad. Sci. U.S.A., 2006, 103: 5729-5734
[38] Rodriguez-Granillo A, Crespo A, Wittung-Stafshede P. Biochemistry, 2009, 48: 5849-5863
[39] Rodriguez-Granillo A, Crespo A, Wittung-Stafshede P. J. Phys. Chem. B, 2010, 114: 1836-1848
[40] Banci L, Bertini I, Cantini F, Della-Malva N, Migliardi M, Rosato A. J. Biol. Chem., 2007, 282: 23140-23146
[41] Banci L, Bertini I, Cantini F, Massagni C, Migliardi M, Rosato A. J. Biol. Chem., 2009, 284: 9354-9360
[42] Keller A M, Benitez J J, Klarin D, Zhong L H, Goldfogel M, Yang F, Chen T Y, Chen P. J. Am. Chem. Soc., 2012, 134: 8934-8943
[43] Peter C, Laliberte J, Beaudoin J, Labbe S. Eukaryot. Cell, 2008, 7: 1781-1794
[44] Du T, Caragounis A, Parker S J, Meyerowitz J, La Fontaine S, Kanninen K M, Perreau V M, Crouch P J, White A R. Free Radic. Biol. Med., 2011, 51: 2060-2072
[45] Longen S, Bien M, Bihlmaier K, Kloeppel C, Kauff F, Hammermeister M, Westermann B, Herrmann J M, Riemer J. J. Mol. Biol., 2009, 393: 356-368
[46] Kako K, Tsumori K, Ohmasa Y, Takahashi Y, Munekata E. Eur. J. Biochem., 2000, 267: 6699-6707
[47] Zhu D Y, Stumpf C R, Krahn J M, Wickens M, Hall T M T. Proc. Natl. Acad. Sci. U.S.A., 2009, 106: 20192-20197
[48] Quenault T, Lithgow T, Traven A. Trends Cell Biol., 2011, 21: 104-112
[49] Abajian C, Yatsunyk L A, Ramirez B E, Rosenzweig A C. J. Biol. Chem., 2004, 279: 53584-53592
[50] Banci L, Bertini I, Ciofi-Baffoni S, Tokatlidis K. FEBS Lett., 2009, 583: 1699-1702
[51] Cobine P A, Pierrel F, Winge D R. Biochim. Biophys. Acta, 2006, 1763: 759-772
[52] Horng Y C, Cobine P A, Maxfield A B, Carr H S, Winge D R. J. Biol. Chem., 2004, 279: 35334-35340
[53] Leary S C, Kaufman B A, Pellecchia G, Guercin G H, Mattman A, Jaksch M, Shoubridge E A. Hum. Mol. Genet., 2004, 13: 1839-1848
[54] Horn D, Barrientos A. IUBMB Life, 2008, 60: 421-429
[55] Arnesano F, Balatri E, Banci L, Bertini I, Winge D R. Structure, 2005, 13: 713-722
[56] Palumaa P, Kangur L, Voronova A, Sillard R. Biochem. J., 2004, 382: 307-314
[57] Voronova A, Meyer-Klaucke W, Meyer T, Rompel A, Krebs B, Kazantseva J, Sillard R, Palumaa P. Biochem. J., 2007, 408: 139-148
[58] Oswald C, Krause-Buchholz U, Rodel G. J. Mol. Biol., 2009, 389: 470-479
[59] Remacle C, Coosemans N, Jans F, Hanikenne M, Motte P, Cardol P. Plant Mol. Biol., 2010, 74: 223-233
[60] Sideris D P, Petrakis N, Katrakili N, Mikropoulou D, Gallo A, Ciofi-Baffoni S, Banci L, Bertini I, Tokatlidis K. J. Cell Biol., 2009, 187: 1007-1022
[61] Banci L, Bertini I, Cefaro C, Ciofi-Baffoni S, Gallo A. J. Biol. Chem., 2011, 286: 34382-34390
[62] Banci L, Bertini I, Ciofi-Baffoni S, Hadjiloi T, Martinelli M, Palumaa P. Proc. Natl. Acad. Sci. U.S.A., 2008, 105: 6803-6808
[63] Culotta V C, Klomp L W J, Strain J, Casareno R L B, Krems B, Gitlin J D. J. Biol. Chem., 1997, 272: 23469-23472
[64] Sagasti S, Yruela I, Bernal M, Lujan M A, Frago S, Medina M, Picorel R. Metallomics, 2011, 3: 169-175
[65] Lamb A L, Wernimont A K, Pufahl R A, Culotta V C, O'Halloran T V, Rosenzweig A C. Nat. Struct. Biol., 1999, 6: 724-729
[66] Barry A N, Blackburn N J. Biochemistry, 2008, 47: 4916-4928
[67] Wright G S A, Hasnain S S, Grossmann J G. Biochem. J., 2011, 439: 39-44
[68] Kirby K, Jensen L T, Binnington J, Hilliker A J, Ulloa J, Culotta V C, Phillips J P. J. Biol. Chem., 2008, 283: 35393-35401
[69] Chu C C, Lee W C, Guo W Y, Pan S M, Chen L J, Li H M, Jinn T L. Plant Physiol., 2005, 139: 425-436
[70] Carroll M C, Outten C E, Proescher J B, Rosenfeld L, Watson W H, Whitson L J, Hart P J, Jensen L T, Culotta V C. J. Biol. Chem., 2006, 281: 28648-28656
[71] Kawamata H, Manfredi G. Antioxid. Redox Signaling, 2010, 13: 1375-1384
[72] Kawamata H, Manfredi G. Hum. Mol. Genet., 2008, 17: 3303-3317
[73] Jensen L T, Culotta V C. J. Biol. Chem., 2005, 280: 41373-41379
[74] Son M, Fu Q, Puttaparthi K, Matthews C M, Elliott J L. Neurobiol. Dis., 2009, 34: 155-162
[75] Arciello M, Capo C R, D'Annibale S, Cozzolino M, Ferri A, Carri M T, Rossi L. BioMetals, 2011, 24: 269-278
[76] Islinger M, Li K W, Seitz J, Voelkl A, Lueers G H. Traffic, 2009, 10: 1711-1721
[77] Bertinato J, Sherrard L, Plouffe L J. Int. J. Mol. Sci., 2010, 11: 2624-2635
[78] Araya M, Andrews M, Pizarro F, Arredondo M. BioMetals, 2012, 25: 383-391
[79] Lassi K C, Prohaska J R. J. Nutr., 2012, 142: 292-297
[80] Bertinato J, Swist E, Plouffe L J, Brooks S P J, L'Abbe M R. Biochem. J., 2008, 409: 731-740
[81] Allen S, Badarau A, Dennison C. Biochemistry, 2012, 51: 1439-1448
[82] Lamb A L, Torres A S, O'Halloran T V, Rosenzweig A C. Nat. Struct. Biol., 2001, 8: 751-755
[83] Banci L, Bertini I, Cantini F, Kozyreva T, Massagni C, Palumaa P, Rubino J T, Zovo K. Proc. Natl. Acad. Sci. U.S.A., 2012, 109: 13555-13560
[84] Reddehase S, Grumbt B, Neupert W, Hell K. J. Mol. Biol., 2009, 385: 331-338
[85] Gross D P, Burgard C A, Reddehase S, Leitch J M, Culotta V C, Hell K. Mol. Biol. Cell, 2011, 22: 3758-3767
[86] Field L S, Furukawa Y, O'Halloran T V, Culotta V C. J. Biol. Chem., 2003, 278: 28052-28059
[87] Kloeppel C, Suzuki Y, Kojer K, Petrungaro C, Longen S, Fiedler S, Keller S, Riemer J. Mol. Biol. Cell, 2011, 22: 3749-3757
[88] Mufti A R, Burstein E, Csomos R A, Graf P C F, Wilkinson J C, Dick R D, Challa M, Son J K, Bratton S B, Su G L, Brewer G J, Jakob U, Duckett C S. Mol. Cell, 2006, 21: 775-785

[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[3] 郭驰, 张望, 涂吉, 陈盛锐, 梁济元, 郭向可. 三维铜基集流体的构筑及在锂金属电池中的应用[J]. 化学进展, 2022, 34(2): 370-383.
[4] 张婷婷, 洪兴枝, 高慧, 任颖, 贾建峰, 武海顺. 基于铜金属有机配合物的热活化延迟荧光材料[J]. 化学进展, 2022, 34(2): 411-433.
[5] 杜宇, 刘德培, 闫世成, 于涛, 邹志刚. 镍铁水滑石电催化氧析出研究进展[J]. 化学进展, 2020, 32(9): 1386-1401.
[6] 章强, 黄文峻, 王延斌, 李兴建, 张宜恒. 基于铜催化叠氮-炔环加成反应的聚氨酯功能化[J]. 化学进展, 2020, 32(2/3): 147-161.
[7] 赵少飞, 刘鹏, 程高, 余林, 曾华强. 自支撑硫镍基电极材料制备及其赝电容性能[J]. 化学进展, 2020, 32(10): 1582-1591.
[8] 乔少明, 黄乃宝, 高正远, 周仕贤, 孙银. 超级电容器用镍锰基二元金属氧化物电极材料[J]. 化学进展, 2019, 31(8): 1177-1186.
[9] 袁跃华, 朱永军, 胡伟, 秦君, 田茂忠, 冯锋. 基于小分子的铜离子与汞离子双识别荧光探针[J]. 化学进展, 2019, 31(4): 550-560.
[10] 戴立信*. Ullmann反应百年纪念及近期复兴——兼及碳-杂原子键的形成[J]. 化学进展, 2018, 30(9): 1257-1297.
[11] 亓媛媛, 李明光, 王宏磊, 张雯, 陈润锋*, 黄维*. 新型空穴传输材料CuSCN在光电器件中的应用[J]. 化学进展, 2018, 30(6): 785-796.
[12] 刘孟岩, 王元双, 邓雯, 温珍海. 铜基电催化剂还原CO2[J]. 化学进展, 2018, 30(4): 398-409.
[13] 丁奇峰, 杨雅琼, 缪文俊, 黄和, 于杨*, 黄菲*. 基于N,S-缩烯酮的杂环合成的研究[J]. 化学进展, 2018, 30(11): 1615-1623.
[14] 李享, 石家愿, 邱爽, 王明芳, 刘长林*. SOD1抑制与活性氧信号转导的调控[J]. 化学进展, 2018, 30(10): 1475-1486.
[15] 黄辉, 陈俊, 卢会茹, 周梦雪, 胡毅, 柴之芳. 帕金森病中的关键金属元素[J]. 化学进展, 2018, 30(10): 1592-1600.
阅读次数
全文


摘要

铜/镍金属伴侣蛋白的研究进展